de-CH
utf-8
math math-format
Fixed Points of a Nonlinear System
non-linsys-01-01a
set
5040
randRange(2,12) randRangeExclude(2,12,[A]) randRangeExclude(2,12,[A,B]) randRangeExclude(2,12,[A,B,C])

The vector field F: \mathbb R^2 \to \mathbb R^2, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\mapsto \begin{pmatrix} Ay_1 + By_2 \\ Cy_1^2 + Dy_1 y_2^2 \end{pmatrix} defines a system y' = F(y).

Find the fixed point y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) \neq (0,0).

-(C*B*B)/(D*A*A)
C*B/(A*D)
{\color{red}y_{\infty,1}} =
{\color{blue}y_{\infty,2}} =

Looking for y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) \neq (0,0), i.e. solutions of F(y) =0.

The first equation is Ay_1 + By_2 = 0 and therefore {\color{red}y_1 = fractionReduce(-B,A) y_2}.

The second equation is 0= C{\color{red}y_1^2} + D{\color{red}y_1} y_2^2 = fractionReduce(C*B*B,A*A)y_2^2 - fractionReduce(B*D,A) y_2^3 and thus because y_1 \neq 0 \neq y_2 it follows {\color{blue}y_2 = fractionReduce(C*B,D*A)}.

Besides the origin there is another fixed point \displaystyle y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) = \left(fractionReduce(-(C*B*B),D*A*A), fractionReduce(C*B,D*A)\right).