de-CH
utf-8
math math-format
Stable Fixed Point of a Nonlinear System
non-linsys-01-01
multiple
90
randRange(2,12) randRangeExclude(2,12,[A])

The vector field F: \mathbb R^2 \to \mathbb R^2, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\mapsto \begin{pmatrix} y_1^2 - y_2^2 \\ Ay_1 + By_1 y_2 \end{pmatrix} defines a system y' = F(y).

Determine the coordinates of the stable fixed point y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) \neq (0,0).

b {\color{red}y_{\infty,1}} = -A/B
b {\color{blue}y_{\infty,2}} = -A/B

We first find the fixed points. These are the solutions of the equation F(y) =0.

The first equation is y_1^2 - y_2^2 = (y_1 - y_2) (y_1 + y_2) = 0 and therefore y_1 = \pm y_2.

The second equation is 0= Ay_1 + By_1 y_2 = Ay_1 (1 + fractionReduce(B,A) y_2) and with y_1 \neq 0 it follows y_2 = fractionReduce(-A,B).

Thus, we have two fixed points \displaystyle y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) = \left(\mp fractionReduce(A,B), fractionReduce(-A,B)\right).

With Jacobi matrix (and the theorem by Hartman-Grobman) we decide about stability.

It is D(y_1,y_2) = \begin{pmatrix} 2y_1 & - 2y_2 \\ A + By_2 & By_1 \end{pmatrix}.

Substituted with the fixed points above: D(y_{\infty,1},y_{\infty,2}) = \begin{pmatrix} \mp fractionReduce(2*A,B) & fractionReduce(2*A,B) \\ 0 & \mpA \end{pmatrix}.

The real eigenvalues are on the diagonal and are both negative in case of y_1 = y_2. Thus, y_{\infty} = \left({\color{red}y_{\infty,1}},{\color{blue}y_{\infty,2}}\right) = \left(fractionReduce(-A,B), fractionReduce(-A,B)\right) stable.