de-CH
utf-8
math math-format
Calculate More Scalar Products
skp-01-02
multiple
234256
randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1]) randRangeExclude(-12,12,[-1,0,1])

Let (V, \langle \cdot, \cdot \rangle) an Euclidean vector space and v, w, u \in V with {\color{blue}\langle v,u \rangle = A} and {\color{red}\langle v,w \rangle = D}.

Determine the value of the scalar product \langle Cu + B w, v\rangle.

x \langle Cu + B w, v\rangle = C*A+D*B

Using the bilinear property, we have \langle Cu + B w, v\rangle = \langle Cu, v \rangle + \langle Bw, v \rangle = C \langle u, v \rangle + B \langle w, v \rangle .

Symmetry of the scalars product delivers C {\color{blue}\langle v,u \rangle}+ B {\color{red}\langle v,w \rangle}.

Substituting yields \langle Cu + B w, v\rangle = negParens(C) \cdot {\color{blue}negParens(A)} + negParens(B)\cdot {\color{red}negParens(D)} = C*A+D*B.