de-CH
utf-8
math
Orthogonality in Function Spaces (Polynomials)
skp-02-03
multiple
256
randRangeExclude(-5,5,[-1,0,1]) randRange(2,5) randRange(2,5)

Given the Euclidean vector space \left(\mathcal P_{\leq 2}, \langle \ , \ \rangle \right) with \displaystyle \langle p, q \rangle = \int_{-1}^{1} p(x)q(x) \; dx

and the polynomials {\color{red}p}, \ {\color{blue}q} \; : [-1,1] \to \mathbb R mit {\color{red}p(x) = Ax^2 + Bx +C} and q(x) = {\color{blue}d}x + 1.

For which {\color{blue}d} are {\color{red}p} and {\color{blue}q} orthogonal?

{\color{blue}d} = (-3*C-A)/B

We are looking for {\color{blue}d} such that \displaystyle 0= \langle {\color{red}p}, {\color{blue}q} \rangle = \int_{-1}^{1} {\color{red}p(x)}\ {\color{blue}q(x)} \; dx .

With the given {\color{red}p}, \ {\color{blue}q} we have

\displaystyle \int_{-1}^{1} {\color{red}\left(Ax^2 + Bx +C\right)}\ ({\color{blue}d}x + 1) \; dx = \left(negParens(fractionReduce(A,4)) {\color{blue}d} x^4 + \left(fractionReduce(B,3){\color{blue}d} + fractionReduce(A,3)\right)x^3 + \left(fractionReduce(C,2){\color{blue}d} + fractionReduce(B,2)\right)x^2 + Cx \right)\biggl|_{-1}^{1} = fractionReduce(2*B,3){\color{blue}d} + fractionReduce(2*A+6*C,3).

We solve fractionReduce(2*B,3){\color{blue}d} + fractionReduce(2*A+6*C,3) =0 for {\color{blue}d} and conclude {\color{blue}d} = fractionReduce(-3*C-A,B).