Given the Euclidean vector space
\left(\mathcal P_{\leq 2}, \langle \ , \ \rangle \right)
with
\displaystyle \langle p, q \rangle = \int_{0}^{G} p(x)q(x) \; dx
and the polynomial {\color{red}p} \; : [0,G] \to \mathbb R
with {\color{red}p(x) =Bx^2 +C}
.
Determine the length L = \|{\color{red}p} \|
.
L =
L
It is
\displaystyle L = \sqrt{\langle {\color{red}p},{\color{red}p}\rangle}
.
By definition and with the given polynomial we have
\displaystyle
\int_{0}^{G} {\color{red}\left(Bx^2 +C\right)^2} \; dx =
\int_{0}^{G} \left(B*Bx^4 + 2*C*Bx^2 + C*C\right) \; dx =
negParens(fractionReduce(B*B,5)) x^5 +
fractionReduce(2*C*B,3)x^3 + C*Cx \biggl|_{0}^{G} =
fractionReduce(B*B*3*pow(G,5)+ 10*C*B*pow(G,3)+15*C*C*G,15)
.
We take the square root and get
L = \sqrt{fractionReduce(B*B*3*pow(G,5)+ 10*C*B*pow(G,3)+15*C*C*G,15)}
.