de-CH
utf-8
math
More Length in Function Spaces (Polynomials)
skp-02-04a
multiple
576
randRangeExclude(-5,5,[-1,0,1]) randRangeExclude(-5,5,[-1,0,1]) randRange(1,9) "\\sqrt \\left(" + (B*B*3*pow(G,5)+ 10*C*B*pow(G,3)+15*C*C*G)/15 + "\\right)"

Given the Euclidean vector space \left(\mathcal P_{\leq 2}, \langle \ , \ \rangle \right) with \displaystyle \langle p, q \rangle = \int_{0}^{G} p(x)q(x) \; dx

and the polynomial {\color{red}p} \; : [0,G] \to \mathbb R with {\color{red}p(x) =Bx^2 +C}.

Determine the length L = \|{\color{red}p} \|.

L = L

It is \displaystyle L = \sqrt{\langle {\color{red}p},{\color{red}p}\rangle} .

By definition and with the given polynomial we have

\displaystyle \int_{0}^{G} {\color{red}\left(Bx^2 +C\right)^2} \; dx = \int_{0}^{G} \left(B*Bx^4 + 2*C*Bx^2 + C*C\right) \; dx = negParens(fractionReduce(B*B,5)) x^5 + fractionReduce(2*C*B,3)x^3 + C*Cx \biggl|_{0}^{G} = fractionReduce(B*B*3*pow(G,5)+ 10*C*B*pow(G,3)+15*C*C*G,15).

We take the square root and get L = \sqrt{fractionReduce(B*B*3*pow(G,5)+ 10*C*B*pow(G,3)+15*C*C*G,15)}.