de-CH
utf-8
math graphie polynomials
Determine a period
t-02-XXa
number
1000
randRange(2,15) randRange(2,15) randRange(2,15) randRangeExclude(2,15,[Z,2*Z]) (N*Z1)/(Z*N1)

Let f be a function with (principal-)period fractionReduce(Z1,N1).

What is the (principal-)period of the function {\color{blue}g} with {\color{blue}g(x) = f\left(fractionReduce(Z,N) \cdot x \right)} ?

P

We are looking for the smallest number {\color{red}P} > 0 with {\color{blue}g(x + {\color{red}P}) = g(x)}.

It is {\color{blue}g(x + {\color{red}P})} = f \left( fractionReduce(Z,N) (x +{\color{red}P})\right) = f \left( fractionReduce(Z,N) x + fractionReduce(Z,N) {\color{red}P} \right).

With given period \color{orange}{fractionReduce(Z1,N1)} of f we try to choose {\color{red}P} such that \color{orange}{ fractionReduce(Z,N) \cdot {\color{red}P} = fractionReduce(Z1,N1)} .

Because this guarantees

f \left( fractionReduce(Z,N) x + \color{orange}{ fractionReduce(Z,N) \cdot {\color{red}P}} \right) = f \left(fractionReduce(Z,N) x + \color{orange}{fractionReduce(Z1,N1)} \right) = f \left(fractionReduce(Z,N) x \right) ={\color{blue}g(x)}.

To {\color{red}P} get it, solve the equation \color{orange}{ fractionReduce(Z,N) \cdot {\color{red}P} = fractionReduce(Z1,N1)} for {\color{red}P} and find

\displaystyle {\color{red}P} = fractionReduce(N*Z1,Z*N1).