de-CH
utf-8
math graphie polynomials
Determine the Period
t-02-XXb
number
1000
randRange(2,15) randRange(2,15) randRange(2,15) randRangeExclude(2,15,[Z,2*Z]) (N*Z1)/(Z*N1)

Let f be a function with (principal-)period fractionReduce(Z1,N1).

Determine {\color{red}b} such that {\color{blue}g} with {\color{blue}g(x) = f\left({\color{red}b} \cdot x \right)} has the (prinicpal-)period fractionReduce(Z,N).

P

With the desired period fractionReduce(Z,N) holds

{\color{blue} g\left(x + fractionReduce(Z,N) \right) = g(x)}.

This can be expressed as

{\color{blue} g\left(x + fractionReduce(Z,N) \right)} = f \left({\color{red}b} \cdot \left(x + fractionReduce(Z,N) \right)\right) = f \left({\color{red}b} x + \left({\color{red}b} \cdot fractionReduce(Z,N) \right)\right).

With the given period \color{orange}{fractionReduce(Z1,N1)} of f try to choose {\color{red}b} such that \color{orange}{ {\color{red}b} \cdot fractionReduce(Z,N) = fractionReduce(Z1,N1)} holds.

Therefore

f \left({\color{red}b} x + \left(\color{red}b \cdot \color{orange}{ fractionReduce(Z,N)}\right)\right) = f \left({\color{red}b} x + \color{orange}{fractionReduce(Z1,N1)} \right) = f \left({\color{red}b} x \right) ={\color{blue}g(x)}.

To get {\color{red}b} solve the equation \color{orange}{ {\color{red}b} \cdot fractionReduce(Z,N) = fractionReduce(Z1,N1)} for {\color{red}b} and find

\displaystyle {\color{red}b} = fractionReduce(N*Z1,Z*N1).