Which vector field K : \mathbb R^2 \to \mathbb R^2, (x,y) \mapsto K(x,y)
fits?
K(x,y) = \begin{pmatrix}
negParens(A) \cdot x \\ negParens(B) \cdot y
\end{pmatrix}
K(x,y) = \begin{pmatrix}
negParens(-A) \cdot x \\ negParens(B) \cdot y
\end{pmatrix}
K(x,y) = \begin{pmatrix}
negParens(-A) \cdot x \\ negParens(-B) \cdot y
\end{pmatrix}
K(x,y) = \begin{pmatrix}
negParens(A) \cdot x \\ negParens(-B) \cdot y
\end{pmatrix}
We read the sign in the coordinates of K(x,y)
in each of the quadrants.
For example, in the first quadrant, x,y >0
.
Thus, it must be K(x,y) = \begin{pmatrix}
negParens(A) \cdot x \\ negParens(B) \cdot y
\end{pmatrix}
.