
Linear Tools for Engineers

Alexander Caspar

January 12, 2025



Contents

I Vector spaces and linear ODE-systems 6

1 Vector spaces 8

1.1 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Coordinates and Change of basis . . . . . . . . . . . . . . . . . . 15

1.4 What is the matrix of a linear map? . . . . . . . . . . . . . . . . 20

1.5 Diagonalisable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Linear ODE-systems 24

2.1 Stationary Solutions of Linear ODE-System . . . . . . . . . . . . 26

2.2 Application to solution space LA . . . . . . . . . . . . . . . . . . 27

2.3 Exponential of a matrix . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Methods to compute eA . . . . . . . . . . . . . . . . . . . . . . . 31

3 Nonhomogeneous Case 38

4 Linearisation 42

II Euclidean Spaces and Fourier Series 47

5 Fourier via Integration 48

5.1 Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Trigonometric Polynomial and Series . . . . . . . . . . . . . . . . 50

5.3 Solving ODE with Fourier . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Fourier in LA disguise 60

6.1 Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1



III Appendix 69

Eigenvalues and -vectors 70

1st order ODE 76

2nd order ODE 84

2



Introduction

3



This monograph introduces more advanced Linear Algebra with applications
relevant to linear systems of first-order Ordinary Differential Equations (ODE)
and Fourier theory. Its primary goal is to equip engineering students with the
mathematical tools necessary to model, analyse, and solve practical engineering
problems. Understanding mathematics as a precise language allows for accu-
rate modelling of complex systems and provides a framework for interpreting
solutions both qualitatively and quantitatively.

By engaging with this material, students will develop a foundational under-
standing of linear algebraic concepts pivotal in engineering disciplines. This
knowledge provides the essential mathematical background required for further
study in advanced topics such as partial differential equations, control theory,
and signal processing. The Linear Algebra skills gained here will serve as indis-
pensable tools in these areas, facilitating the understanding and application of
more advanced mathematical techniques.

Prerequisites Students are expected to have a solid foundation in basic ma-
trix algebra, systems of linear equations, and the fundamental concepts of eigen-
values and eigenvectors. These topics are thoroughly covered in a first year un-
dergraduate course in an engineering Bachelor programme1. Additionally, some
familiarity with linear ODEs of the first and second order will be beneficial.
For those who may need a refresher, an appendix is provided to review these
essential concepts.

Students should know appropriate CAS routines and apply them. They should
also be able to interpret and analyse CAS code effectively in the context of
engineering applications.

Learning outcomes and mathematical topics Upon successful comple-
tion of this course, students will be able to apply Linear Algebra concepts in
various situations. We give an overview:

Vector spaces and linear maps Students can verify whether a subset is
a vector space, understand the concept of basis, coordinates and dimension,
and apply these ideas to solve practical problems. Understand and apply linear
maps, including the ability to find their matrices in different bases and determine
their properties, e.g. diagonalisation.

Linear ODE-systems Students can determine the matrix A in a modelling
ODE-system y′ = Ay + g and know what a solution of Linear ODE-system,
know what a stationary solution is and compute it. Moreover they can com-
pute a solution of Linear ODE-system with eigenvectors and eigenvalues, in the
diagonalisable case and with the exponential of a matrix.

Exponential of a matrix Students know what the exponential of a matrix
is and know the application to a system. They can apply basic facts about the

1For example in David C. Lay et al, Linear Algebra and its Applications, 5/E, Pearson
Hall, 2016, Chapters 1 to 3, Chapter 5.1, 5.2, and 6.1, as well as in Appendix B.
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exponential and can compute a the exponential for several types of matrices,
including of a Jordan block.

Non linear systems Students can compute stationary solution of a non linear
system and can apply the concept of linearisation to determine (non) stability
of a system.

Fourier Theory Students know what a periodic function is and how to com-
pute its continuation. They know the formulae for real and complex Fourier
coefficients and how to uses this solving ODEs.

Euclidean Vector Spaces Students know the concepts of norm, unit vectors,
and orthogonal vectors and their applications, e.g. compute the coordinates
with respect to an orthonormal basis. Compute the projection of a vector onto
a subspace and understand the connection with Fourier theory.
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Part I

Vector spaces and linear
ODE-systems
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We start with an example of a typical situation, given a Linear System of Com-
partments. Consider three compartments (e.g. machines or organs) that are
linked. We model this in schematic way by the following :

ζ(t) // K1

b31

  

b21 // K2

b32~~

a2 //

K3
a3 //

The function ζ indicates an external impulse or (energy) source that had an
impact on the system. In K2/3 the coefficient a2/3 stands for some kind of
(energy) drain.

The function yi gives the magnitude at the time t in compartment Ki by the
value yi(t). Moreover, we assume that there is a linear interaction between

compartment Ki and compartment Kj by y′i(t) =
∑

j

±bijyj(t). The left hand

side y′i(t) is the value of the derivative of the function yi at the time t. We want
to see the derivative as a measure of alteration in the compartment Ki. If we
apply this convention to the above example we get three equations:





y′1(t) = ζ(t)− b21 y1(t)− b31 y1(t)
y′2(t) = b21 y1(t)− b32 y2(t)− a2 y2(t)
y′2(t) = b31 y1(t) + b32y2(t)− a2 y3(t)



 .

Exercise Check this.

We want to write these equations in a compact form y′(t) = Ay(t) + g(t) by
using the notion of the matrix-vector-product from Linear Algebra. On the left

hand side we have the vector y′(t) =



y′1(t)
y′2(t)
y′3(t)


 and on the right hand side the

product of A =



−(b31 + b21) 0 0

b21 −(a2 + b32) 0
b31 b32 −a3


 with y(t) =



y1(t)
y2(t)
y3(t)


 . To

complete there is the summand g(t) =



ζ(t)

0
0


 .

Exercise Check that A and g do the job, i.e. the equation y′(t) = Ay(t)+g(t)
is a compact form of the three equations.

Our main task is to understand, which functions yi fulfil these equations simulta-
neously? In the above example a solution would be a function y : R→ R3 with a
graph that is represented by a space curve. Given a matrix A can we write down
solution functions? Can we find criteria how such solutions would look like? Or
more sophisticated, we can ask how the vector space of solutions looks like. Can
we say anything about the structure of the set LA = {y : R → Rn | y′ = Ay}?
To this extend we have to investigate the notion of a vector space.
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Chapter 1

Vector spaces

Let us start with recalling the well known vector space R2 and R3 :

x

y

P

x

y

z

The plane R2 The space R3

We know how to add two vectors and multiply a vector by a scalar. More
general we have also the definition of Rn for n > 3 by the following

1. We write vector v as v =




a1
a2
...
an


 ∈ Rn or v = ( a1 a2 ... an ) ∈ Rn.

2. The sum of v =




a1
a2
...
an


 and w =




b1
b2
...
bn


 ∈ Rn is v +w =




a1+b1
a2+b2

...
an+bn


 ∈ Rn

3. The multiplication by a scalar λ is defined as λ · v =




λ·a1
λ·a2

...
λ·an


 ∈ Rn.

4. There is a bunch of rules fulfilled by + and ·.

The idea of an abstract vector space is to generalise those rules that are fulfilled
in the vector space Rn.
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Definition. Let V be (a nonempty) set with 2 operations

+ : V × V → V, (v, w) 7→ v + w addition of vectors

· : R× V → V, (λ, v) 7→ λv multiplication by scalar

such that for each u, v, w ∈ V and λ, µ ∈ R
• v + u = u+ v

• u+ (v + w) = (u+ v) + w

• λ(u+ v) = λu+ λv and (λ+ µ)v = λv + µv

• (λµ)v = λ(µv)

• 1 · v = v

• There is a (unique) zero vector 0 ∈ V s.t. u+ 0 = u.

• There is a (unique) additive inverse −u ∈ V s.t. u+ (−u) = 0.

We call V a real vector space (VS). If one replaces the real numbers R with the
complex numbers C one gets a complex VS.

Examples and Discussions For each of the following sets we are looking for
the operations + and ·, that make it to a VS in a natural (obvious) way.

1. Mm×n = { Matrices with m rows and n columns}:
Fill in the dots.

+ For A = (aij), B = (bij) ∈Mm×n  A±B = C = (cij) = . . .

· Scalar λ and A = (aij) ∈Mm×n  λ ·A = . . .

2. Cn as a complex VS:

Let v =




a1
a2
...
an


 ∈ Cn, where each ai is a complex number. We add two

vectors by adding the coordinates as complex numbers. Also we multiply

v with a complex λ ∈ C in each coordinate. Note that v =




a1
a2
...
an


 ∈ Cn

with the complex conjugated in each coordinate.

We get Cn as a real VS, in case we restrict the scalar multiplication to
real numbers λ ∈ R ⊂ C.

3. VS of (discrete-time) signals S:

The vectors are sequences of numbers (yk) = (. . . , y−2, y−1, y0, y1, y2, . . .).
Each coordinate might represent a signal

−5 0 5 10
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4. P≤n = {Polynomials of degree ≤ n}
Let p(x) = a0 + a1x+ a2x

2 + . . .+ an−1x
n−1 + anx

n and

q(x) = b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1 + bnx
n,

then (p+ q)(x) = c0 + c1x+ c2x
2 + . . .+ cn−1xn−1 + cnx

n with ci = . . .

Question: Why do we assume ≤ n and not just = n?

5. Set of all functions F(R,R) = {f : R→ R}
Let f : R→ R and g : R→ R with x 7→ f(x) and x 7→ g(x). Then

f +︸︷︷︸
new

g : R→ R, x 7→ (f +︸︷︷︸
new

g)(x) = . . .

and with λ ∈ R we have

λ ·︸︷︷︸
new

f : R→ R x 7→ (λ ·︸︷︷︸
new

f)(x) = . . .

Examples of function spaces The last example is one of our main appli-
cations. In general it collects all functions. As we know from Calculus those
function might have additional properties. If we restrict to such a subset the
operations on F(R,R) are still valid in this subset. Popular examples are

Cn(R) = {f : R→ R | The n-th derivative f (n) exists and is continuous}

and C∞(R) = {f : R → R | All derivatives of f exist}. If we consider n func-
tions f1f2, . . . fn in C1(R), they form a vector valued map

f : R→ Rn, t 7→ f(t) =




f1(t)
f2(t)

...
fn(t)


 .

All these elements form the VS C1(R,Rn).

Exercise Let A =

( 1
5

2
5

− 3
5

13
10

)
. It defines the equation y′ = Ay. Verify that

the functions t 7→ et
(

1
2

)
∈ C1(R,R2) and t 7→ e

1
2 t

(
4
3

)
∈ C1(R,R2) and also

their sum are solutions of y′ = Ay, i.e. y′(t) = Ay(t) for all t.

Exercises on Signals To familiarise further with the abstract notion of vector
space solve the following.

1. Let yk = cos
(π

4
· k
)

.

(a) Find the values (yk) = (. . . , y−2, y−1, y0, y1, y2, . . .) and plot the val-
ues in a (k, yk)-coordinate system.
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(b) Compute the signal (zk) with zk = akyk + ak+1yk+1 + ak+2yk+2,

where ak = ak+2 =

√
2

4
and ak+1 =

1

2
.

(c) Take the signal with wk = cos

(
3π

4
· k
)

and compute the values

akwk + ak+1wk+1 + ak+2wk+2. How do you interpret your result?

2. Define δk =

{
1 k = 0

0 k 6= 0
. Question: How would you call this signal?

(a) Let yk be defined as in the picture.

k

yk

−4 −3 −2 −1 0 1 2 3 4

a−2

a0

a3

Write yk in terms of δk.

(b) Try to find a general formula that expresses an arbitrary yk in terms
of δk.

1.1 Subspaces

Definition. Let V be a vector space. A nonempty subset U ⊂ V is called
subspace of V, if for all u, v ∈ U and all λ ∈ R

• u+ v ∈ U and λ · u ∈ U

In other words: U itself is a VS that is closed with respect to + and ·.

Exercise Why is the zero vector 0 always in a subspace U?

Popular Examples

1. In plane and in space we have for example

U =

{(
x
y

)
with 3x+ 4y = 0

}
U =







x
y
z


 with 3x+ 4y = 0





x

y

U

y

x

z

U
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2. We have a sequence of subspaces:

F(R,R) ⊃ C0(R) ⊃ C1(R) ⊃ C2(R) ⊃ . . .
. . . ⊃ C∞(R) ⊃ P≤∞ ⊃ . . . ⊃ P≤2 ⊃ P≤1 ⊃ P≤0 ⊃ {0}

Exercises

1. Decide whether the given subset U ⊂ V is a subspace.

(a) V = R2 and U =

{(
s
t

)
|s · t ≥ 0

}

(b) V = R3 with

U1 =








1
0
−1


+ s




1
1
2


 ; s ∈ R



 and U2 =







s
0
s


 ; s ≥ 0





(c) V = R4 and U =








1
0
0
0


+ t




0
1
2
3


 , t ∈ R





(d) V = P≤n = {Polynomials of degree ≤ n} with

U = . . .

i. All polynomials of the form p(x) = ax2 where a ∈ R.

ii. All polynomials of the form p(x) = a+ x2 where a ∈ R.

iii. All polynomials in P≤3 with integer coefficients.

iv. All polynomials with p(0) = 0.

(e) V = M2×2 with U1 =

{(
a 0
a2 a

)
; a ∈ R

}
, U2 =

{
A|A> = −A

}
and

U3 = { All regular matrices }.
(f) V = F(R,R) with

U1 = {f ∈ V |f(0) = 1} and U2 = {f ∈ V |f(1) + f(3) + f(10) = 0}

2. Let A be a m× n-matrix and b ∈ R? defining a system Ax = b.

(a) Replace the question mark.

(b) Let b = 0 the zero vector.

Verify that K = {x|Ax = 0} is a subspace of R?. Is it true for b 6= 0?

(c) Check that IA = {b|Ax = b, for some x} is a subspace.

(d) Clarify, where these are subspaces and where x and b lie.

The solution space LA A matrix A ∈ Mn×n defines a system y′ = Ay .

The space of solution is LA = {y ∈ C1(R,Rn) | y′ = Ay} and this a subspace
of C1(R,Rn). Check that LA is closed with respect to + and · .

A solution of this equation/system y′ = Ay is a function y ∈ C1(R,Rn) such

that y′(t) = Ay(t) for all t where y′(t) =




y′1(t)
y′2(t)

...
y′n(t)


 , y(t) =




y1(t)
y2(t)

...
yn(t)


.
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We give a geometric interpretation of a solution. Let y′ = Ay be a system
defined by an n× n-matrix A. At each point y ∈ Rn there is a vector Ay ∈ Rn.
We thus obtain a vector field F : Rn → Rn, y 7→ Ay. At each point y we think
the vector Ay pinned.

A solution of the system is a differentiable function y : R→ Rn with t 7→ y(t),
which fulfils the equation y′(t) = Ay(t) for all t. Such a solution geometrically

represents a curve in Rn: For n = 2 it is a plane curve t 7→ y(t) =
(
y1(t)
y2(t)

)
and

a space curve t 7→ y(t) =

(
y1(t)
y2(t)
y3(t)

)
for n = 3.

If we interpret t as time, the velocity y′(t) along the curve at each point y(t) ∈ Rn
is the vector Ay(t) ∈ Rn. We can determine the direction y′(t0) of a point y(t0)
on the solution curve at any time t0. The solution curve is therefore tangential
to the vector field at every point.

Ay

y2

y1

y0

y =
(
y1

y2

)

In the above figure a (red) plane solution curve is drawn and in two of its points
the (blue) tangent vectors.

Let the vector field F be, for example, the velocity field of a fluid. If a particle
is thrown into the flow at the time t = 0 at the location y0, it is then carried
along by the flow: At each point y(t) of its journey t 7→ y(t) it therefore has the
speed Ay(t) given by the flow there. The journey of the particle realises exactly
the solution of the initial value problem y′ = Ay, y(0) = y0. It is located at the
time t at y(t) given by the solution.

Exercise

Consider the system

(
y′1(t)
y′2(t)

)
=

(
0 −1
1 0

)(
y1(t)
y2(t)

)

and

(
y1(0)
y2(0)

)
=

(
R
0

)
as initial values.

Verify that the solution y : R→ R2 is a circle. What
is the flow direction?

x = y1(t)

y = y2(t)

R

R

Solve the system by finding solutions of the two ODEs. The solutions confirm
the geometric observation.
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1.2 Linear maps

Definition. Let V and W be vector spaces.

1. A map F : V → W,x 7→ F(x) is called linear map, if for all x, y ∈ V
and for all α ∈ R we have

• F(x+ y) = F(x) + F(y) and F(αx) = αF(x).

2. A bijective linear map is called isomorphism. The VS V and W are
called isomorphic.

Examples of linear Matrix-Vector-Product

• F : R2 → R3,

(
x
y

)
7→



x+ y
x− 2y

3x


 =




1 1
1 −2
3 0



(
x
y

)
is linear.

• In general A ∈Mm×n defines F : V = Rn →W = Rm, x 7→ Ax.

Why is this linear?

For n = m it is an isomorphism ⇐⇒ matrix A is invertible.

• Rotation and Reflection

A =

(
cosα − sinα
sinα cosα

)
A =

(
cosα sinα
sinα − cosα

)

Rotation with angle α Reflection at axis with slope
α

2

e(1)

e(2)

Ae(1)

Ae(2)

α

α/2α e(1)

e(2)

Ae(1)

Ae(2)

• The map



x
y
z


 7→



x
y
0


 orthogonal projection onto xy-plane. In general

a linear map P : V → V with P ◦ P = P is called projection.

Exercises

1. Which of the following maps are linear?

(a) Translation: Rn → Rn, x 7→ x+ a, for 0 6= a ∈ Rn

14



(b) Derivative: For V = C1(]a, b[),W = C0(]a, b[),

F : C1(]a, b[)→ C0(]a, b[), f 7→ df

dx
= f ′

(c) Sampling: Let a ≤ a1 < . . . < ak ≤ b and

F : C0([a, b])→ Rk, f 7→



f(a1)

...
f(ak)




2. Let U(α) =




cosα 0 − sinα
0 1 0

sinα 0 cosα


. What is the geometric interpretation

of v 7→ U(α)v?

1.3 Coordinates and Change of basis

Spanning sets For given vectors v1, . . . , vn ∈ V and numbers α1, . . . , αn ∈ R
we get a vector α1v1 + . . .+ αnvn called linear combination (LC) of vi. The
sum of two LC α1v1 + . . . + αnvn and β1v1 + . . . + βnvn is again a LC of vi.
Also the multiplication of a LC by a scaler becomes a LC of the same vectors
vi. Thus we define

Definition. Let V be a VS and v1, . . . , vn ∈ V . The set of all LC of vi

U = {α1v1 + . . .+ αnvn | αi ∈ R} = 〈{v1, . . . , vn}〉

is a subspace of V . We say U is spanned or generated by v1, . . . , vn ∈ V .

Exercises

1. Let W be the set of all vectors of the form




5b+ 2c
b
c


 , where b and c are

arbitrary. Find vectors u and v such that W = 〈{u, v}〉.

2. Let W be the set of all vectors of the form




s+ 3t
s− t
2s− t

4t


 . Show that W is a

subspace of R4.

3. For the next two tasks one might want to use a CAS.

(a) Show that w =




9
−4
−4
7


 is in the subspace of R4 spanned by v1, v2, v3,

where v1 =




8
−4
−3
9


 , v2 =




−4
3
−2
−8


 , v3 =




−7
6
−5
−18


 .
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(b) Determine if y =




−4
−8
6
−5


 is in the subspace of R4 spanned by the

columns of A =




3 −5 −9
8 7 −6
−5 −8 3
2 −2 −9


 .

Question: Let V be a vector space. Is there a generating set {v1, . . . , vm}
of V and how can we find it? Well, of course we could take a subset of vectors
that contains all element of V . But we want to get a minimal set in order to
understand the form of the elements in V .

Linear independent Let recall notion of linear independent in Rm. For each
vector w we have to ensure that we can find numbers β1, β2, . . . , βn such that
the equation w = β1v1 + β2v2 + . . .+ βnvn is fulfilled.

Exercise Actually the equation w = β1v1 + β2v2 + . . . + βnvn is a system of
linear equation w = B · β. How are B and β defined?

If we choose w = 0 we have the special case 0 = β1v1 +β2v2 + . . .+βnvn ∈ Rm.

Definition (Linear Independent in Rm). We call v1, v2, . . . , vn linear inde-
pendent if the trivial solution β1 = β2 = . . . = βn = 0 is the only one of the
linear system B · β = 0.

Therefore we try to solve a m× n - system of linear equations using tools from
Linear Algebra like Gauss elimination. To decide at least whether a non trivial
solution exists we can apply the criteria given by the determinant or the rank
of B, i.e. if m = n we have to see whether det(B) 6= 0. In case of m > n we
compute the rank and check whether Rank(B) = n ?

Definition (Linear Independent in abstract V ). We call v1, v2, . . . , vn ∈ V
linear independent if the trivial solution β1 = β2 = . . . = βn = 0 is the only one
of the equation 0 = β1v1 + β2v2 + . . .+ βnvn.

Note that this definition in the same manner as for Rm, but we don’t have tools
at hand like Gauss, Determinante etc.

Exercise Decide whether {pi} are linear independent in P≤3.

1. p1(x) = 1 + x2, p2(x) = 1− x2

2. p1(x) = 1, p2(x) = 1 + x, p3(x) = 1− x.

3. p1(x) = x+ 1, p2(x) = x− 1, p3(x) = x2 + 1, p4(x) = x2 − 1

4. p1(x) = x3 − 2, p2(x) = 2x2 + 1, p3(x) = −x+ 2, p4(x) = 1

Definition. If B is a minimal spanning set of V , we call B a basis von V .
(“Minimal” meaning, that there is no subset of B spanning V ).
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Fact (Criteria). The set B = {b1, . . . , bn} is a basis of V if only if one of the
equivalent condition is fulfilled:

i. 〈B〉 = V and the vectors b1, . . . , bn are linear independent.

ii. For each v ∈ V exist unique coefficients αi ∈ R s.t.

v = α1b1 + . . .+ αnbn.

Note Every VS has at least one basis.

Examples of bases

1. The column vectors of the unity matrix in Mn×n are a basis of Rn, the
standard basis ei.

2. Each set of n linear independent vectors in Rn is a basis.

3. Monomials 1, x, x2, . . . , xn form a basis of P≤n.

4. Application to solution space LA

Let A =

(
1
5

2
5

− 3
5

13
10

)
. The functions t 7→

(
et

2et

)
and t 7→

(
4e

1
2 t

3e
1
2 t

)
form a

basis of LA ⊂ C1(R,R2) for the system y′ = Ay.

5. For Fourier in Part II

The functions c0, c1, s1, . . . , cN , sN defined by

c0(x) =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx),

are linear independent and therefore a basis of a subspace TN ⊂ C0([a, b]).

Exercises

1. Discuss and decide if








1
0
1


 ,



−1
0
1


 ,




0
3
0





 ⊆ R3 form a basis.

2. Determine a basis of {A ∈M2×2|AT = A}.

3. Let x+ 1, x− 1, x2 + 1, x2 − 1 ∈ P≤2. Decide whether they generate P≤2,
are linear independent or even form a basis. Likewise for
{
U1(x) = x3 − 2, U2(x) = 2x2 + 1, U3(x) = 1, U4(x) = −x+ 2

}
⊆ P≤3.

4. Find a basis for the set of vectors

(a) in R3 in the plane x+ 2y + z = 0.

(b)




8
9
−3
−6
0



,




4
5
1
−4
4



,




−1
−4
−9
6
−7



,




6
8
4
−7
10



,




−1
4
11
−8
−7




(Use a CAS)
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Fact (Dimension). Let V be generated by a finite number of vectors. Each
basis has the same number of n vectors and n is called dimension of V .

Notation: n = dimV = dimR V.

Each set of n linear independent vectors in a VS of dimension n is a basis.

Examples

1. dimR Rn = n = dimC Cn = n but dimR Cn = 2n.

2. dimRMn×n = n2 (only real entries) Q: What about symmetric matrices?

3. dimP≤n = n+ 1

4. Let K = {x|Ax = 0} and IA = {b|Ax = b, for some x} be the subspaces
above. There’s a relation between the dimension of these subspaces:

n = dimKA + dim IA The Rank Theorem

The dimension dim IA is called the rank of the matrix.

5. The subspace TN ⊂ C0([a, b]) has dimension 2N + 1.

6. dimCn(R) =∞← dimension can be infinity.

Coordinates and coordinate vector Let dimV = n. With a choice of a
basis B = {b1, . . . , bn} we identify V with Rn. There is an isomorphism

ϕB : V
'−→ Rn, v =

n∑

i=1

αibi 7→ ϕB(v) =



α1

...
αn


 = [v]B.

The αi ∈ R are unique determined by v, but depend on the choice of a
basis. These are the coordinates of the vector v with respect to this chosen

base B. They form the coordinate vector ϕB(v) = α =

(
α1

...
αn

)
∈ Rn..

Example Let n = 2 and v = ( 4
2 ) . If we choose the standard base B = {e1, e2}

(see figure on the left)

y

x

y

x

B = {e1, e2} B′ = {b′1, b′2}

we get v = ( 4
2 ) = 4 ( 1

0 ) + 2 ( 0
1 ) = 4e1 + 2e2. With respect to this base v has the

coordinates 4 and 2, .i.e. the coordinate vector is ϕB(v) = ( 4
2 ). Let B′ = {b′1, b′2}

be the basis with b′1 = ( 1
1 ) and b′2 =

(−1
1

)
(see figure above on the right). Then

we look for numbers α1 and α2 with v = ( 4
2 ) = α1b

′
1 +α2b

′
2 = α1 ( 1

1 )+α2

(−1
1

)
.

The coordinate vector with respect to this base is ϕB′(v) = ( α1
α2

).
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Exercises

1. Show that B′ = {b′1, b′2} in the above example is indeed a basis and solve
the linear system above to determine ϕB′(v).

2. Show that B =

{(
1
2
1

)
,

(
2
9
0

)
,

(
3
3
4

)}
form a basis of R3 and determine the

coordinate vector ϕB(v) for v =

(
5
−1
9

)
.

3. In P≤3 we choose (standard-) basis 1, x, x2, x3.

What is the coordinate vector U3(x) = 8x3 − 4x?

4. Find the vector x determined by the given coordinate vector [x]B and the
given basis B.

(a) B =

{(
3
−5

)
,

(
−4
6

)}
, [x]B =

(
5
3

)

(b) B =







−1
2
0


 ,




3
−5
2


 ,




4
−7
3





 , [x]B =



−4
8
−7




5. Find the coordinate vector [x]B of x relative to the basis given by bi.

(a) b1 =

(
1
−3

)
, b2 =

(
2
−5

)
, x =

(
−2
1

)

(b) b1 =




1
0
3


 , b2 =




2
1
8


 , b3 =



−1
−1
2


 , x =




3
−5
4




Change of Basis, Coordinate transformation Take two bases of the same
n-dimensional VS V n = V denoted by B = (b1, . . . , bn) and B′ = (b′1, . . . , b

′
n).

For a vector v ∈ V there are two coordinate vectors: with respect to B and with
respect to B′.

[v]B =



v1
...
vn


 and [v]B′ =



v′1
...
v′n


 How are those related?

To answer this question start with v = bi compute the coordinate vector and
form a matrix T = ([b1]B′ . . . [bn]B′). If we apply this to v = b′i we get another
matrix S = ([b′1]B . . . [b′n]B) and the relations [v]B′ = T [v]B and [v]B = S[v]B′ .

Definition. The matrix T = ([b1]B′ . . . [bn]B′) is the transformation matrix
for the base change B  B′. For B′  B the transformation is S = T−1.
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Example Let V = R2 with B = (b1, b2) = (e1, e2) as standard basis and a new
basis B′ = (b′1, b

′
2) = (e1 + e2, e2 − e1).

x

y

v

b1

b2

b′1b′2

It’s v = 2b′1 + b′2 and

S = ([b′1]B [b′2]B) =

(
1 −1
1 1

)

We get

[v]B = S[v]B′ =

(
1 −1
1 1

)(
2
1

)
=

(
1
3

)

Exercises

1. Start with v in terms of the other basis.

2. Let B = {b1, b2} and C = {c1, c2} be bases for a vector space V , and
suppose b1 = 6c1 − 2c2 and b2 = 9c1 − 4c2.

(a) Find the change-of-coordinates matrix from B to C.
(b) Find [x]C for x = −3b1 + 2b2. Use part (a).

3. Let A = {a1, a2, a3} and B = {b1, b2, b3} be bases for a vector space V ,
and suppose a1 = 4b1 − b2, a2 = −b1 + b2 + b3, and a3 = b2 − 2b3.

(a) Find the change-of-coordinates matrix from A to B.

(b) Find [x]B for x = 3a1 + 4a2 + a3.

1.4 What is the matrix of a linear map?

We have the following situation with two vector spaces V = V n and W = Wm

of dimV = n and dimW = m, a linear map F : V n → Wm, x 7→ F(x). We
choose a basis of V denoted by B = {b1, . . . , bn} and C = {c1, . . . , cm} a basis

of W . For the vector x ∈ V we get the coordinates [x]B =

(
x1

...
xn

)
∈ Rn and also

for y = F(x) ∈ W the coordinates [F(x)]C = [y]C =

( y1

...
ym

)
∈ Rm. They sit in

a diagram

V n
F // Wm

x_

��

� // F(x)
_

��
[x]B

� A // [F(x)]C = A[x]B

How can we compute the matrix A?
It is a m×n-matrix and called ma-
trix of the linear map F with
respect to B and C.

Each such linear map F : V n → Wm can be represented by an m × n-matrix,
depending on the choice of the bases of V and W . We apply the addtional steps
to compute this representation matrix:
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1. In the special case of a basis vector bi compute F(bi) for each i and
afterwards the coordinates [F(bi)]C .

2. Form a matrix A = ([F(b1)]C . . . [F(bn)]C) i.e. the columns of A are the

coordinate vectors of F(bi) with respect to C.

3. We get the formula [y]C = [F(x)]C = A[x]B , i.e. to compute the coordi-

nate vector of y = F(x) we multiply the matrix A with the coordinate
vector of x.

Example Let V = P≤2 with B = {1, x, x2} and W = P≤1 with C = {1, x}.
The derivative F : V →W,p 7→ p′ defines a linear map. Compute

F(1) =
d

dx
1 = 0,F(x) =

d

dx
x = 1,F(x2) =

d

dx
x2 = 2x

and [F(1)]C =

(
0
0

)
, [F(x)]C =

(
1
0

)
, [F(x2)]C =

(
0
2

)
. These three vectors are

the columns of A, thus the matrix is A =

(
0 1 0
0 0 2

)
.

Let us test this with p(x) = a+ bx+ cx2. We get

[p(x)]B =



a
b
c


 and [p′(x)]C = [b+ 2cx]C =

(
b
2c

)
.

Indeed [p′(x)]C = A[p(x)]B:

(
b
2c

)

︸ ︷︷ ︸
[p′(x)]C

=

(
0 1 0
0 0 2

)

︸ ︷︷ ︸
A



a
b
c




︸ ︷︷ ︸
[p(x)]B

Composition Let B, C and D bases in V n,Wm and Zp.

Let matrix A representing F : V →W w.r.t. B and C and B the map G : W → Z
w.r.t. C und D. We get a diagram

V n

H=G◦F

''F // Wm G // Zp

x � // F(x) � // G(F(x)) = G ◦ F(x)

[x]B
� // A[x]B

� // BA[x]B

In particular with F : Rn → Rm, x 7→ Ax, G : Rm → Rp, y 7→ By it follows
H = G ◦ F : Rn → Rp, x 7→ BAx.

21



Change of basis revisited What happens to the matrix A representing a
linear map F : V n → V n if we change the basis?

Let [F ]B and [F ]B′ representing F w.r.t. B and B′.
Let T be coordinate change matrix B  B′. We get

[v]B
� F //

_

T

��

[F ]B[v]B_

T

��
T [v]B = [v]B′

� F // [F ]B′ [v]B′ = T [F ]B[v]B
∗
= [F ]B′T [v]B

If we multiply the equation ∗ with T−1 (from the right) we get a transformation
rule [F ]B′ = T [F ]BT−1 given by the coordinate change matrix.

Fulfilling this relation the matrices [F ]B′ and [F ]B are called to be conjugated.

Example Let V = R2, with bases B,B′ as in the above example 1.3 and

consider A = [F ]B =

(
3/2 1/2
1/2 3/2

)
.

For the change B′  B we had S =

(
1 −1
1 1

)
therefore T = S−1 = 1

2

(
1 1
−1 1

)
.

Compute [F ]B′ = T [F ]BT−1 = 1
2

(
1 1
−1 1

)(
3/2 1/2
1/2 3/2

)(
1 −1
1 1

)
=

(
2 0
0 1

)
.

Thus with a clever choice of B′ it might be possible to represent F by an easier
matrix.

Exercises

1. In the last example compute An for n = 2, 3, 4, . . ..

2. Let B = {b1, b2, b3} and D = {d1, d2} be bases for vector spaces V and W ,
respectively. Let T : V →W be a linear transformation with the property
that T (b1) = 3d1 − 5d2, T (b2) = −d1 + 6d2 and T (b3) = 4d2. Find the
matrix for T relative to B and D.

3. Let V 3 = R3 be with standard basis B.

A linear map F : V 3 → V 3 is defined by A =



− 5

6
1
6

1
3

1
6 − 5

6
1
3

1
3

1
3 − 1

3


 .

(a) Choose a basis B′ =








2
0
−1


 ,



−1

1
0


 ,




1
1
2





 to get new

coordinates. Compute transformation matrix T for B  B′.
(b) Compute B that represents F with respect to B′.
(c) What is the geometric meaning?
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1.5 Diagonalisable

Definition. A matrix A ∈ Mn×n(R) is called diagonalisable, if there exists

an invertible T s.t. T−1AT = J = D(λ1, λ2, ..., λn) =




λ1 0
0

λ2 0
. . .

. . .
0 λn−1 0

λn


 .

Fact. Diagonalisable is equivalent to that A has n linear independent eigenvec-
tors v1, ..., vn, i.e. there exists an eigenbasis of Rn. In this case the entries on
the diagonal are the eigenvalues λ1, ...λn and the matrix T is T = ( v1 v2 . . . vn )
i.e. the columns of T are eigenvalues of A.

In the appendix we review basic facts on eigenvalues (EVal) and eigenvec-
tor (EVec).

Examples

1. If all EVal of a matrix A are simple i.e. λi 6= λj if i 6= j, the matrix
diagonalisable.

2. A =
(

0 −1 1
−3 −2 3
−2 −2 3

)
with EVal −1,1,1 and EV

(
1
3
2

)
,
(

1
0
1

)
,
(−1

1
0

)
. Hence we get

T =
(

1 1 −1
3 0 1
2 1 0

)
that gives T−1AT = diag(−1, 1, 1) = J =

(−1 0 0
0 1 0
0 0 1

)
.

3. Hermitian matrix (after Charles Hermite, 1822 - 1901)

Definition. For a matrix A = (aij) ∈ Mn×n(C) we define A
T

= (aji),
i.e. the entries are conjugated, further columns and rows are swapped.

In case of A = A
T

it is called hermitian. If all aij ∈ R and A = AT it
is called symmetric.

Fact. For such an A all n EVal of A are real and it is diagonalisable.

Exercises

1. Which matrix is diagonalisable?

(a)
(

0 1 2
1 0 3
2 3 0

)

(b)

(
1 0 0 0 i
0 1 0 i 0
0 0 1 0 0
0 −i 0 1 0
−i 0 0 0 1

)

(c)
(

0 1
−1 0

)

(d)
(
4 −3
6 −5

)
.

(e) None.

2. Assume A diagonalisable. Does this imply that A is invertible? Or vice
versa? Or both or no implications?
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Chapter 2

Linear ODE-systems

Let us start with an elementary example of two compartments K1
b−→ K2

with 0 < b. One might see this as an application, where K1 is a source that
supplies the use K2. The mathematical model is given by the equation

y′(t) = Ay(t), where y(t) =

(
y1(t)
y2(t)

)
, y′(t) =

(
y′1(t)
y′2(t)

)
and A =

(
−b 0
b 0

)
.

This equation is a collection of two ODE:

y′1(t) = −by1(t)

y′2(t) = by1(t)

and we can find the solution directly by our knowledge from Calculus, given in
the following coordinate system.

t

y1(t) = y10 · e−bt

y2(t) = y10(1− e−bt)

y10y10

For each of the solution curves t 7→ y1(t), t 7→ y2(t) we have chosen an initial
value y1(t) = y10 and y2(t) = 0.

Exercise Instead of plotting the solution
curves t 7→ y1(t), t 7→ y2(t) we can visualise

a solution t 7→
(
y1(t)
y2(t)

)
as a plane curve in

a (y1, y2)-coordinate system. It would look
like this example

y1

y2

(y1(t), y2(t))

y1(t0)

y2(t0)
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How does this curve for the above example K1
b−→ K2 look like?

y1(t)

y2(t)

Since we want to understand much more advanced systems, we won’t be able
to get solutions directly from Calculus. Instead we apply tools from Linear
Algebra.

Hence where is the Linear Algebra? We can write the general solutions
as a sum of vector

y(t) =

(
y1(t)
y2(t)

)
=

(
C1e

−bt

−C1e
−bt + C2

)
= C1e

−bt
(

1
−1

)
+ C2e

0t

(
0
1

)
.

The vectors v1 =

(
1
−1

)
and v2 =

(
0
1

)
are eigenvectors of A =

(
−b 0
b 0

)
with

eigenvalue λ1 = −b and eigenvalue λ2 = 0.

Exercise Check this, i.e. verify, that in each case we get Avi = λivi.

Yet another Example Consider a system with three compartments:

K1
b1−→ K2

b2−→ K3 with 0 < b1 < b2.

The ODEs are y′1 = −b1y1, y′2 = b1y1 − b2y2 and y′3 = b2y2.

Therefore (check this as an exercise) in the equation of the corresponding

system of linear ODE y′(t) = Ay(t) the matrix A is given by A =

(
−b1 0 0
b1 −b2 0
0 b2 0

)
.

Solution curves look like this (compare the exercise below)

t t t

y1 y2 y3

Exercises

1. Use Calculus to solve the above ODEs step by step:

The first ODE y′1 = −b1y1 is exponential decay and has been solved
previously.

The 2nd one y′2 = b1y1 − b2y2 is a bit more advanced, as one might
need integrating factors.

If one got y2 one solves the last ODE y′3 = b2y2 by plugging in and
integration.
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2. Let K1 a
// K2

b
// K3

c

vv

y1(t) y2(t) y3(t)

Find a matrix A such that y′ = Ay models this system.

Again we are able to find the solutions by applying integration and other meth-
ods from Calculus. But in more complex situation we might run into difficult
issues. Therefore Linear Algebra can offer an elegant way out. The main tools
are eigenvalues (EVal) and eigenvectors (EVec).

2.1 Stationary Solutions of Linear ODE-System

Recall that A ∈ Mn×n defines y′ = Ay , a homogeneous linear n × n-system

with y′(t) = Ay(t) where y′(t) =




y′1(t)
y′2(t)

...
y′n(t)


 , y(t) =




y1(t)
y2(t)

...
yn(t)


.

First, we will concentrate on the homogenous case, y′(t) = Ay(t), i.e. there
is no summand g(t) on the right hand side of the equation. This means for a
compartment system that there is no independent source interacting with the

system. A solution is a map y : R → Rn, t 7→ y(t) =




y1(t)
y2(t)

...
yn(t)


 , such that

for all t it is y′(t) = Ay(t). A solution y∞ with y′∞ = 0 is called stationary.
In case of a stationary solution the system is in equilibrium. Another key
question is, whether such an equilibrium is stable. This means what happens
to a solution y, that starts in the neighbourhood of y∞. In the stable case, it
will converge towards y∞. There are several equivalent characterisations of a
stationary solution coming from Linear Algebra:

• There exists always the trivial solution y∞ = 0. If det(A) 6= 0 it is unique.

• Stationary solutions are solutions y∞ of the homogeneous system of linear
equations 0 = A · y∞.

• If λ = 0 is an EVal and v =




x1
x2

...
xn


 is an EVec of A the function y : R→ Rn

with t 7→ y(t) = e0tv = v is stationary. Each EVec for EVal λ = 0 is such
a solution. Those exists only if det(A) = 0.

Exercises

1. Find stationary solutions 0 6= y∞ ∈ R3 of y′ = Ay =
(

0 ω 0
−ω 0 0
0 0 0

)
y, with

0 6= ω ∈ R.
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2. We have a system

K1

b31

!!

b21

((
K2

b12

oo

b32rrK3
b13

SS
b23

== y′1 = −(b31 + b21)y1 + b12y2 + b13y3

y′2 = b21y1 − (b12 + b32)y2 + b23y3

y′3 = b31y1 + b32y2 − (b13 + b23)y3

with matrix A =



−(b31 + b21) b12 b13

b21 −(b12 + b32) b23
b31 b32 −(b13 + b23)


 .

Show that such a system has always a stationary solution 0 6= y∞ ∈ R3.

3. More general let

K1 K2K3

Kj Kk Kl

. . . . . .

. . .

b12

b21

bk2

b?1 b?2

b?l

be a system. The corresponding equations are y′i = −
n∑

j=1

bjiyi +

n∑

j=1

bijyj .

They can be translated to y′ = Ay with

A =




−
∑n
j=2 bj1 b12 b13 · · · b1n
b21 −

∑n
j=1,j 6=2 bj2 b23 · · · b2n

b31 b32 −
∑n
j=1,j 6=3 bj3 · · · b3n

...
...

...
. . .

...

bn1 bn2 bn3 · · · −
∑n−1
j=1 bjn



.

Show that such a system has always a stationary solution 0 6= y∞ ∈ Rn.

2.2 Application to solution space LA

Fact (Basis solution). Let λ be an EVal with EVec v =




x1
x2
...
xn


 of A.

Then the function y : R → Rn, t 7→ y(t) = eλtv =




y1(t)
y2(t)

...
yn(t)


 =




x1e
λt

x2e
λt

...
xne

λt


 is a

solution of y′ = Ay.
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Exercises

1. Check the above facts by computing the derivative in each component and
by using the eigenproperty Av = λv.

2. A particle moving in a planar force field has a position vector x that
satisfies x′ = Ax. The 2 × 2-matrix A has eigenvalues 4 and 2, with

corresponding eigenvectors v1 =

(
−3
1

)
and v2 =

(
−1
1

)
. Find the position

of the particle at time t, assuming that x(0) =

(
−6
1

)
.

Fact (Dimension of LA). Consider y′ = Ay with matrix A ∈ Mn×n. The
solution space LA ⊂ C1(R,Rn) is an n-dimensional subspace. Hence to get a
basis of LA we need n linear independent vectors.

For example those n linear independent vectors could be n linear independent
EVec. Thus we are in the case of an eigenbasis, a basis formed by EVec.

Fact (Case of an eigenbasis). Let A with EVal λ1, . . . , λn delivering an eigen-
basis v1, . . . , vn of Rn. Then {t 7→ eλ1tv1, . . . , t 7→ eλntvn} form a basis von LA.
Each solution y can be written

t 7→ y(t) = C1e
λ1tv1 + C2e

λ2tv2 + . . .+ Cne
λntvn with constants C1, . . . , Cn

Problem Not every A ∈Mn×n provides an eigenbasis! We are going to meet

a (new) tool: eA =

∞∑

k=0

Ak

k!
for a quadratic matrix. This enables an algorithm

to solve a system y′ = Ay in the general case.

Exercises

1. Find the general solution of y′ = Ay for A =
(

2 3
−1 −2

)
and A =

(−2 −5
1 4

)
.

2. Let y′ = Ay with A = 1
3



−1 0 0
1 −1 2
0 1 −2


 and basis

B =



t 7→ eλ1·t




0
2
1


 , t 7→ e−

1
3 ·t



x
y
z


 , t 7→ eλ3·t




0
−1
1







of LA. Determine λ1, λ3 and



x
y
z


.

3. Use the above recipe to get the solution for K1
b1−→ K2

b2−→ K3 and
compare it with results coming from Calculus.

Hint: Use e.g. v1 =

(
b1 − b2
−b1
b2

)
, v2 =

(
0
−1
1

)
and v1 =

(
0
0
1

)
as EVec.
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Classification in case n = 2 Let y′ = Ay with A ∈ M2×2. Then we have
the following cases

1. Let λ1 and λ2 be real EVal with EVec v1, v2 ∈ R2 defining an eigenbasis.

(a) If λ1 6= λ2 this is always the case. Then the general solution is
given by y(t) = C1e

λ1tv1 + C2e
λ2tv2.

(b) With a double EVal λ1 = λ2 = α this can be but does not have
to be the case of an eigenbasis. Then the general solution is given
by y(t) = C1e

αtv1 + C2e
αtv2 = eαt(C1v1 + C2v2).

(c) For a double EW λ1 = λ2 = α, for which there isn’t an eigenbasis,
we use later different methods: either eA or we transform the system
into an 2nd order ODE (Appendix).

2. If λ1,2 = α ± iβ /∈ R are EVal with EVec v1, v2 ∈ C2, these are always
linearly independent, and we have as general solution

y(t) = C1e
(α+iβ)tv1 + C2e

(α−iβ)tv2 = C1e
αteiβtv1 + C2e

αte−iβtv2

= eαt
(
C1e

iβtv1 + C2e
−iβtv2

)
.

To get a real representation in the applications the complex vector y(t)

can be rewritten y(t) =

(
y1(t)
y2(t)

)
=

(
eαt(K1 cos(βt) +K2 sin(βt))
eαt(L1 cos(βt) + L2 sin(βt))

)
, with

constants K1,2 and L1,2. We use here the Euler formulae from the complex

numbers, for example: cos(t) = eit+e−it

2 .

With the EVal we can now understand the qualitative behaviour of a solution.

1. EVal λ1, λ2 real

λ1, λ2 < 0: “stable” λ1, λ2 > 0 : “instable” λ1 < 0 < λ2: “saddle point”

2. Complex EVal λ2 = λ1

real part < 0: “stable” real part > 0: “instable” real part = 0: “center”

Exercise Find for each of the six cases an example of a matrix A, that fits.
It should have real entries and at most one is = 0.
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2.3 Exponential of a matrix

Consider A ∈ Mn×n(R) defining a system y′ = Ay. We want to tackle the
general question how to determine a basis of LA ⊂ C1(R,Rn) if A is not diago-
nalisable (or we cannot decide on this)?

Let us recall from Calculus how ex is defined for a real number x. It is given by
the Taylor series:

R 3 x 7→ ex = 1 + x+
1

2
x2 +

1

3!
x3 + . . .+

1

k!
xk + . . . ∈ R

We formally translate this into higher dimensions and obtain for A ∈ Mn×n a

new matrix eA =

∞∑

k=0

Ak

k!
∈Mn×n.

Let us collect some properties of this construction:

1. Each summand 1
k!A

k is for k = 0, 1, 2, 3, . . . the matrix power Ak multi-
plied by the number 1

k! , with k! = 1 · 2 · . . . · (k − 1) · k.

2. For the zero matrix A = 0 it is e0 = En ithe unit matrix, since all other
summands are the zero matrix.

3. For every A ∈ Mn×n the series eA converges. We do not want to specify
here what we mean by convergence.

4. Note that eA = (ηij) is again an n× n-matrix.

5. Let A be a function A : R → Mm×n, t 7→ A(t) = (aij(t)) with functions
as entries aij : R → R, t 7→ aij(t). If aij ∈ C1(R), then the map A is
differentiable with A′(t) = (a′ij(t)).

For n = 1 we get A : R→Mm×1, i.e. A ∈ C1(R,Rm).

Fact (Main Application). Let A ∈Mn×n(R).

1. The function R→Mn×n,

t 7→ etA = En + tA+
1

2
t2A2 +

1

3!
t3A3 + . . .+

1

k!
tkAk + . . .

is differentiable with derivative
(
etA
)′

= AetA.

2. The column vectors of the matrix etA form a basis of the solution space LA.

3. As in the case n = 1 applies

(a) The general solution y of y′ = Ay is written as

y(t) = etAC︸ ︷︷ ︸
matrix times vector

∈ Rn with C =



C1

...
Cn


 , Ci constant.

(b) Let y0 ∈ Rn. Then the function y with y(t) = etAy0 is the unique
solution of the linear ODE-system y′ = Ay with y(0) = y0.
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Question / Problem Apart from technical difficulties, we therefore have a
well-defined procedure for determining a basis of LA ⊂ C1(R,Rn), but how do
we calculate the exponential etA without the computer?

2.4 Methods to compute eA

We start with matrices with a structure that allows us to compute the expo-
nential using the definition and elementary manipulations.

Warm up Let A = ( 0 a
0 0 ). What is eA =? Hint: Compute A2, A3 and plug

the powers into the definition of eA.

Exponential of a diagonal matrix The exponential of a diagonal matrix is
also a diagonal matrix.

A =




a11 0 . . . . . . 0
0 a22 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 ann



 eA =




ea11 0 . . . . . . 0
0 ea22 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 eann



.

For this one applies that the powers of a diagonal matrix are diagonal again
with powers of the diagonal entries on the diagonal. Again use the definition as
a series.

Exponential of a block diagonal matrix A block diagonal matrix looks

like this A =




A1

A2

. . .

Ak



, each Ai is a quadratic matrix and they

sit along the diagonal. All other entries are 0. For such A we get

Aj =




Aj1

Aj2
. . .

Ajk



 eA =




eA1

eA2

. . .

eAk




Commutativity In general the product of two matrices A and B depends on
the order, i.e. AB 6= BA.

Fact. For A,B ∈Mn×n there is a well-known rule

AB = BA =⇒ eA+B = eAeB But not in general
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Application

1. Let us apply this to compute eA with A =

(
2 3
0 2

)
. First we decompose A

as A =

(
2 3
0 2

)
=

(
2 0
0 2

)

︸ ︷︷ ︸
=B

+

(
0 3
0 0

)

︸ ︷︷ ︸
=C

. Since BC = CB we can apply the

power rule eA = eB+C = eBeC . As a diagonal matrix eB =

(
e2 0
0 e2

)

and further

eC = E2 + C +
1

2
C2 + . . . = E2 + C +

1

2

(
0 3
0 0

)2

+ . . .

= E2 + C +

(
0 0
0 0

)
+ (only zero matrices) =

(
1 3
0 1

)
.

Hence eA = eB+C = eBeC =

(
e2 0
0 e2

)(
1 3
0 1

)
=

(
e2 3e2

0 e2

)
.

2. Application for inverse With B = −A we see A(−A) = (−A)A we get

with the rule eAe−A = eA+(−A) = e0 = En and therefore (eA)−1 = e−A .

Some background For the general case, we write eA+B according to the

definition as a power series. Then we use (A + B)n =

n∑

k=0

(
n

k

)
AkBn−k. Even

if the factors A and B do not commute, there are ways to calculate eAeB : For
example, there is the Baker-Campbell-Hausdorff formula

eAeB = eA+B+ 1
2 [A,B]+ 1

3! [A,[A,B]]+... with [A,B] = AB −BA.

H. F. Baker (1866 – 1956), J.E. Campbell (1862 – 1924) and Felix Hausdorff (1868 – 1942)

Exercises

1. Compute (with a CAS) etAi , where t ≥ 0 and Ai:

(a) A1 =

(
7 −2
0 7

)

(b) A2 =

(
4 −3
6 −5

)

(c) A4 =

(
5 1
−4 1

)
.

(d) A3 =




1 1 0 0 0
0 1 0 0 0
0 0 −3 2 0
0 0 0 −3 2
0 0 0 0 −3




.

2. True or False?

(a) det(eA) 6= 0.

(b) det(eA) = edetA.

(c) det(e−A) =
(
det
(
eA
))−1

(d) det
(
eA+B

)
= det

(
eA
)

det
(
eB
)
.
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Eigenvalues and Determinante of eA Let λ a EVal with EVec v of A. We
compute with the definitions

(
eA
)
v =

( ∞∑

k=1

1

k!
Ak

)
v Definition eA

=

∞∑

k=1

1

k!

(
Akv

)
Theory

=

∞∑

k=1

1

k!

(
λkv

)
Ak · v = λk · v

=

( ∞∑

k=1

1

k!
λk

)
v Theory

 
(
eA
)
v = eλ · v

i.e. if λ1, λ2, . . . , λn are EVal of A then eλ1 , eλ2 , . . . , eλn are EVal of eA.

Moreover, as det(A) is the product of the eigenvalues we have

det
(
eA
)

= eλ1 · eλ2 · . . . · eλn = eλ1+λ2+...+λn .

In our strategy for calculating etA, we would like to transform the matrix A
into a new matrix J , where etJ can be determined more easily. The theorem
(Jordan normal form) below ensures that there is such a J for every A.

Firstly, we describe the structure of the matrix J and ensure that etJ can actu-
ally be specified directly.

Definition. Let λ be a number.

A matrix J ∈ Mn×n of the form Jλ =



λ 1 0 ...
0 λ 1 0 ...

...
...

0... λ 1
0... λ


 is called Jordan block of

length n.

In the following exercises we compute etJ .

Exercises

1. Start with case λ = 0 and compute the powers J2
0 , J

3
0 , . . ..

J0 = B =




0 1 0 ...
0 0 1 0 ...

. . .
. . .

0... 0 1
0... 0


 B2 =




00 1 0 ...
00 0 1 0...

. . .
. . .

. . .
0... 0 01
0... 00
0... 0


 . . .

and eventually Bn−1 =

( 0 0 ... 1
0 0 ... 0
...

...
0 0 ... 0

)
 Bn = 0 = Bn+1.
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2. Decompose Jλ = A+ J0 with J0 = B and AB = BA and use the commu-

tativity Jλ = J = λEn︸︷︷︸
=A

+




0 1 0 . . .
0 0 1 0 . . .

. . .
. . .

0 . . . 0 1
0 . . . 0




︸ ︷︷ ︸
=B

.

We apply our power rule eJt = eAt+Bt = eAteBt.

By definition
(
eλtEn

)(
En +Bt+

t2

2!
B2 +

t3

3!
B3 + . . .+

tn−1

(n− 1)
!Bn−1 + 0

)

that composed to etJ = eλt




1 t t2

2!
t3

3! . . . tn−1

(n−1)!
0 1 t t2

2!
t3

3! . . .
. . .

. . .
. . .

0 . . . 1 t t2

2!
0 . . . 1 t
0 . . . 1




.

Note that the entries on the minor diagonals are the coefficients of the Taylor
series for et at t0 = 0.

Application Conjugation The ransformation A J uses the so called con-
jugation: Two matrices A and J are conjugated if there is a T ∈Mn×n with T
invertible such that T−1AT = J . If this is the case, we get

eA = T eJ T−1 Cave! Order.

Why is this so? With T−1AT = J we get A = TJT−1 and we see

Ak = (TJT−1)k = (TJT−1)(TJT−1)(TJT−1) . . . (TJT−1)︸ ︷︷ ︸
k factors

= TJkT−1

as the coloured factors cancel. Thus

eA =

∞∑

k=0

Ak

k!
=

∞∑

k=0

TJkT−1

k!
= T

( ∞∑

k=0

Jk

k!

)
T−1 = TeJT−1.

Application to our purpose In order to solve y′ = Ay we need etA. If we
know the matrix T we can compute etJ and afterwards TetJT−1.

Examples of conjugation

1. It’s A = ( 3 2
1 4 ) diagonalisable. Choose T =

(
1 −2
1 1

)
with EVec as columns.

With T−1 = 1
3

(
1 2
−1 1

)
we get T−1AT = ( 5 0

0 2 ) = D diagonal with ex-

ponential etD =
(
e5t 0
0 e2t

)
and etA = TetDT−1 = 1

3

(
e5t+2e2t 2e5t−2e2t
e5t−e2t 2e5t+e2t

)
.

Compare this with outcome using the eigenbasis directly. It might look
different, but with the choice of an initial values it becomes unique.
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2. Base change for LA The general solution y of the equation y′ = Ay is
given by y(t) = etAC ∈ Rn, C ∈ Rn.

With conjugation it follows

etA = TetJT−1  y(t) = TetJT−1C = TetJ
(
T−1C

)
= TetJ C̃.

This means that the general solution could be written in the form TetJ C̃.
Therefore the columns of TetJ form also a basis of LA, and again one might
have some flexibility to find an appropriate basis, i.e. representation of
the solutions.

Fact (Jordan Normal Form Theorem (JNF)).

1. For each A ∈Mn×n there exists a matrix T ∈Mn×n s.t.

T−1AT = J =




J1

J2
. . .

Jk




with Ji =




λi 1 0 . . .
0 λi 1 0 . . .

. . .
. . .

0 . . . λi 1
0 . . . λi



∈Mni×ni

The matrix J is the Jordan normal form of A.

2. The entries on the diagonal are the EVal λi of A.

3. If A is diagonalizable J is of the form J = D(λ1, . . . , λn).

Example non diagonalisable vs. diagonalisable The model for

K1 a
// K2

b
// K3

c

vv

y1(t) y2(t) y3(t)

is the system y′ = Ay =
(−a 0 0

a −b c
0 b −c

)
y.

1. Choosing the parameters a = 2
3 , b = 1

3 , c = 1
3 gives A =

(
− 2

3 0 0
2
3 − 1

3
1
3

0 1
3 − 1

3

)

with EVal λ1,2 = − 2
3 (double) and λ3 = 0. There is no eigenbasis as the

EVec are of the form v1,2 =




0
−1
1


, v3 =




0
1
1


. With T =




0 −3 0
−1 3 1
1 0 1




we get the Jordan matrix T−1AT =



− 2

3 1
0 − 2

3

0
0

0 0 0


 = J. For initial

value y(0) = y0 the solution is therefore

y(t) = eAty0 =
(
TetJT−1

)
y0 =


T



e−

2
3 t te−

2
3 t

0 e−
2
3 t

0
0

0 0 1


T−1


 y0.
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2. If we choose the parameters a = 2
3 , b = 1

3 , c = 2
3 it gives A = 1

3

(−2 0 0
2 −1 2
0 1 −2

)

with EVal λ1,2,3 = −1,− 2
3 , 0 and EVec (v1 v2 v3) =

(
0 −1 0
−1 0 2
1 1 1

)
. In this

case we have an eigenbasis.

Convergence: (non-)diagonalisable The difference whether A is diagonal-
isable or not is reflected by the qualitativ behaviour of the solution functions.
In the case of diagonalisable the coordinate functions are given by terms of the
form t 7→ e−αt. On the other hand if A is non diagonalisable the coordinate
functions look like t 7→ t · e−αt or more general t 7→ q(t) · e−αt, where q is a
polynomial in t.

t
yα1 (t) = yα1,0e

−α1t

y

yα2 (t) = yα2,0e
−α2t

y

yβ1 (t) = yβ1,0 · t · e−β1t

yβ2 (t) = yβ2,0 · t2 · e−β2t

y

Summary Let A ∈ Mn×n. In order to solve y′ = Ay, we try to follow the
developed recipe:

1. Try to get (e.g. with the computer) T with T−1AT = J . This is the JNF

consisting of Jordan blocks Ji = J =




λ 1
0

λ 1
. . .

. . .
0 λ 1

λ


.

2. For each block Ji = J compute etJ = eλt




1 t t2

2!
t3

3! . . . tn−1

(n−1)!
0 1 t t2

2!
t3

3! . . .
. . .

. . .
. . .

0 . . . 1 t t2

2!
0 . . . 1 t
0 . . . 1




3. Compute for the block matrix

etJ =




etJ1
0

etJ2
. . .

0 etJk


 mit J =




J1

J2
. . .

Jk
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4. Eventually compute etA = TetJT−1. The column vectors form a basis of
the solution space.

Recall that the general solution y of y′ = Ay is y(t) = etAC ∈ Rn, C ∈ Rn.

Using etA = TetJT−1 we get y(t) = TetJT−1C = TetJ
(
T−1C

)
= TetJ C̃

as a representation of the general solution, i.e. the columns of TetJ also
define a basis.

Example/Exercises Conjugation and JNF

1. Compute (with a CAS) the JNF and the conjugate matrix T

(a) A =




1 −3 −2
−1 1 −1
2 4 5




(b) A =




0 −1 1
−3 −2 3
−2 −2 3




2. Verify and complete that with A =

(
−2 1
−1 0

)
and T =

(
1 −2
1 −1

)
that

T−1AT =

(
−1 1
0 −1

)
= J  etJ =

(
e−t te−t

0 e−t

)

. . . etA = TetJT−1.
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Chapter 3

Nonhomogeneous Case

Till now we had homogeneous systems of the form y′ = Ay. Usually one encoun-
ters nonhomogeneous systems like y′ = Ay + g. Let us look at the introductory

example ζ(t) // K1

b31

!!

b21 // K2

b32~~

a2 //

K3

a3 //

with A =

(−(b31+b21) 0 0
b21 −(a2+b32) 0
b31 b32 −a3

)
and g(t) =

(
ζ(t)
0
0

)
.

Stationary solutions Elementary but again central solutions of y′ = Ay+ g
are stationary solutions, that represent an equilibrium of the system. A constant
solution of the system is a stationary solutions. Such a stationary y(t) = y∞
can only exist if g is a constant function. It is a necessary condition that g is
constant. Assume that there is a stationary y∞ ∈ Rn.

Hence 0 = y′∞ = Ay∞ + g(t)  g(t) = −Ay∞ ∈ Rn. Thus g(t) = g must be
constant. If, in addition to g being constant, we also know that A is invertible,
then we even can determine y∞ by solving the equation g = −Ay∞ for y∞ and
it is −A−1g = y∞.

If we write 0 = y′∞ = Ay∞ + g ⇐⇒ Ay∞ = −g, we ask the question whether
there is (exactly) one solution y∞ or any number of solutions of a nonhomoge-
neous linear system of equations. We can decide this using Linear Algebra, i.e.
with the determinant and/or the rank.

Exercises

1. Find stationary solutions y∞ for A =

(
0 1
−1 −2

)
, g(t) =

(
2
2

)

and A =

(
− 1

2 − 1
6

0 − 1
3

)
, g(t) =

(
−1
1

)
.

2. Let y′ =

(
−3 0
1 −2

)
y+

(
3
0

)
and y∞ =

(
1

y∞,2

)
stationary, what is y∞,2?
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Principal methods to find solution For nonhomogeneous y′ = Ay+g there
are there principal method to find solution:

1. Determining particular solution (as for ODE)

2. Decoupling in case of diagonalisable

3. Integrating Factors (as for ODE)

Method with particular solution Let A ∈ Mn×n and g ∈ C1(R,Rn) and
we are looking for a nonhomogeneous solution y ∈ C1(R,Rn) of y′ = Ay+g (I).
If g = 0 constant we get a homogeneous system y′ = Ay (H) and we know how
to solve it. As in 1-dimensional case we have the recipe: The general solution
of (I) is the sum of a particular solution of (I) and the general solution of (H).

The general solution of (H) is yH(t) = etAC that leads to the general solution
for (I) with y(t) = yp(t) + etAC.

Choosing an initial value for (H) we have yH(t) = etAy0, where y0 = y(0).

Together it yields for (I): y(t) = yp(t) + etA(y0 − yp(0)) .

Examples/Exercise If possible, a stationary solution yp = y∞ might be good
choice. Take for example the system y′ = Ay + g above with ζ(t) = ζ constant

and A =



−(b31 + b21) 0 0

b21 −(a2 + b32) 0
b31 b32 −a3


 , g(t) = g =



ζ
0
0


 .

Check that detA 6= 0 and therefore y∞ = −A−1g and the solution with initial

value y(0) = y0 is y(t) = y∞ + etA(y0 − y∞) .

Exercises Apply the this method to the system y′ = Ay + g with

A =

(
0 1
−1 −2

)
, g =

(
2
2

)
and A =

(
− 1

2 − 1
6

0 − 1
3

)
, g =

(
−1
1

)
.

Method by decoupling in case of eigenbasis Let g ∈ C1(R,Rn) not
necessarily constant. We again look for the solutions y ∈ C1(R,Rn) of the
nonhomogeneous system y′ = Ay + g and assume that A is diagonalisable.

There is therefore an invertible T with T−1AT = D =




λ1

λ2

0

0

...
λn


 .

Let x(t) = T−1y(t), thus y(t) = Tx(t). With the linearity of the matrix-vector
product, the derivative is y′(t) = (Tx(t))′ = Tx′(t). Inserted into the system

y′(t) = Ay(t) + g(t) Tx′(t) = A(Tx(t)) + g(t) substitution

 T−1(Tx′(t)) = T−1((AT )x(t) + g(t)) from left T−1·
 (T−1T )︸ ︷︷ ︸

=En

x′(t) = (T−1AT )︸ ︷︷ ︸
=D

x(t) + T−1g(t)︸ ︷︷ ︸
=h(t)
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We obtain a new nonhomogeneous system: x′(t) = Dx(t) +h(t), that is written

in coordinates:




x′1
x′2
...
x′n


 =




λ1

λ2

0

0

...
λn







x1
x2

...
xn


 +




h1

h2

...
hn


 . Each coordinate

gives an ODE, i.e. we have to solve n nonhomogeneous ODE

x′1 = λ1x1 + h1

x′2 = λ2x2 + h2

...

x′n = λnxn + hn.

As these are decoupled it can be solved separately, for example by the method

integrating factors, we get xi(t) = eλit

∫
e−λishi(s) ds+Cie

λit. With x = T−1y,

the solution we are looking for is then given by y = Tx.

Example Apply this to A =



−1 0 0
1
2 − 1

2 0
1
2

1
6 − 1

3


 and g(t) =



ζ(t)

0
0


 =




2
0
0


.

We read the EVal from the diagonal and conclude that there is an eigenbasis.

We choose T =



−2 0 0
2 −1 0
1 1 1


 T−1AT = diag

(
−1,− 1

2 ,−
1
3

)
.

Now we substitute y = Tz  y′ = Tz′. In the original system y′ = Ay + g we
get Tz′ = ATz + g and after multiplication form the left with T−1 it becomes
decoupled z′ = T−1ATz + T−1g = diag

(
−1,− 1

2 ,−
1
3

)
z + T−1g.

With T−1 =



− 1

2 0 0
−1 −1 0
3
2 1 1


 we get explicitly:

z′1 = −1z1 − 1  z1(t) = c1e
−t − 1

z′2 = −1

2
z2 − 2 z2(t) = c2e

−t/2 − 4

z′3 = −1

3
z3 + 3 z3(t) = c3e

−t/3 + 9

Exercises

1. Get the above solution with re-substitution y(t) = Tz(t).

2. Apply the first method of particular solution to solve the system and
compare your solutions.

3. Find the solutions

(a) y′(t) =

(
− 1

2 − 1
6

0 − 1
3

)
y(t) +

(
−1
1

)

(b) y′(t) =

(
− 1

2 − 1
6

0 − 1
3

)
y(t) +

(
−t
t

)
with y(0) =

(
1
1

)

(Linear ODE with non constant coefficients)
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Higher dimensional Integrating Factors For a nonhomogeneous initial
value problem y′ = Ay + g with y(0) = y0 the solution can be written directly
as

y(t) = etAy0 +

∫ t

0

e(t−τ)Ag(τ)dτ,

with integration in each coordinate.

To understand this, we make the approach for the homogeneous ODE system as
in the one-dimensional case and start with y(t) = etAC(t). Here, y(t) = etAC is
the general solution of the homogeneous system y′ = Ay and C after variation
is a function C ∈ C1(R,Rn). To calculate y‘(t) =

(
etAC(t)

)′
, we use:

i) Due to the linearity of the matrix-vector multiplication etAC(t), the prod-
uct rule also applies to matrix or vector-valued functions.

ii) It is (etA)′ = AetA.

Thus follows y′(t) =
(
etAC(t)

)′ i)
= (etA)′C(t) + etAC ′(t)

ii)
= AetAC(t) + etAC ′(t).

The approach and the derivative are now used in y′(t) = Ay(t) + g(t):

AetAC(t) + etAC ′(t) = AetAC(t) + g(t).

Using (etA)−1 = e−tA) and C ′(t) = e−tAg(t) we integrate in each coordinate

C(t) =

∫ t

0

e−uAg(τ)dτ +

(
K1

...
Kn

)

with n integration constants K1, ...,Kn ∈ R.

We insert this C(t) into y(t) = etAC(t), and the general solution of the non-

homogeneous ODE follows y(t) = etAC(t) = etA

(
K1

...
Kn

)
+ etA

∫ t

0

e−τAg(τ)dτ.

With y(0) = y0 is

∫ t=0

0

e−τAg(τ)dτ = 0 and thus must be

(
K1

...
Kn

)
= y0.

Exercise Check that with this method we find the solution of the system

y′(t) = Ay(t) + g(t), A =

(
−2 1
−1 0

)
, g(t) =

(
1
e−t

)
, y(0) =

(
0
1

)

as y(t) =

(
1
2 t

2e−t + 2te−t
1
2 t

2e−t + 3rd−t + 2e−t − 1

)
.
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Chapter 4

Linearisation

We describe a one-dimensional model using an ODE of the form y′(t) = F (y(t))
with initial value y(0) = y0. We assume that we are able to write the ODE
in an explicit form y′(t) = F (y(t)). The right-hand side is then an expression
that depends just on y. Our system is an equilibrium y∞ if y′∞ = 0. What
happens if we disturb the equilibrium y∞? How do the solutions behave in the
neighbourhood of an equilibrium solution y∞? Do they converge towards y∞?
Can we specify a criterion for convergence near y∞? Thus we are interested in
more closer look at the behaviour near to a stationary solution. In the Appendix
we give some foundational material on these topics.

Examples stationary solutions We start with the example y′ = y(1− y):

1

F (y) = y(1− y)

y

y0

1

y0

t

y′ = y(1− y) Solution with
y∞,0 = 0, y∞,2 = 1 y(0) > 1 and y(0) < 1

The stationary solution y∞,0 attracts solutions nearby and therefore we call it
attractor. The other one y∞,1 repels solutions and we see it as a repeller.

f(x) = y2 sin(y)

π 2π 3π

y

y0

π

y0
y0

3π

t

y′ = y2 sin(y) A curve remains in y∞,k = k · π, k = 0, 1, 2, . . .
i.e. range [kπ, (k + 1)π] where it started
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Here we have just numerical solutions and we assume that the stationary solu-
tion y∞,k = kπ is a repeller for an even k and an attractor for an odd k.

Linearisation aka try to describe solution locally near y∞ How can
the behaviour of solutions nearby a stationary solution be determined more
precisely?

We choose the Ansatz y(t) = y∞ + h(t) with a small perturbation h(t) of a
stationary solution y∞ with F (y∞) in the ODE.

y′ = (y∞ + h)′ = y′∞ + h′ = 0 + h′ = h′
∗
= F (y∞ + h).

The Taylor approximation for the function y 7→ F (y) at the point y∞ applies
with y = h+ y∞ and h = y − y∞

F (y∞ + h)
Taylor

= F (y∞)︸ ︷︷ ︸
=0

+F ′(y∞)h+ ThO.

The terms of higher order (ThO) contain powers h2, h3, . . .. For a small h, the
powers become even smaller, so that we consider the higher order terms (ThO)
to be negligibly small. Linearisation now means that we omit the ThO.

With h′
∗
= F (y∞ + h) we get for h approximately the ODE h′ = F ′(y∞)h with

the solution h(t) = h0e
F ′(y∞)t. Inserting this into the approach gives the ap-

proximate solution to the initial condition y(0) = y0 or h0 = h(0) = y0 − y∞:

y(t) = y∞ + (y0 − y∞)eF
′(y∞)t

In summary, the following criterion results:

Fact. Linearisation y′ = F (y)

1. The stationary solutions of the nonlinear equation y′ = F (y) are the zeros
of the right-hand side F .

2. The solution of the linearised equation h′ = F ′(y∞)h behaves locally nearby
the stationary solution y∞ like the exact solution of y′ = F (y):

If F ′(y∞) < 0, then eF
′(y∞)t → 0 for t → ∞. For solutions y that

start close enough to y∞, y(t)→ y∞ follows for t→∞.

In this case, the stationary solution y∞ is a attractor or synony-
mously a stable equilibrium.

If F ′(y∞) > 0, the following applies: No matter how close a solution
y 6= y∞ starts at y∞, the values y(t) move away from y∞.

In this case, the stationary solution y∞ is a repeller or synonymously
a unstable equilibrium.

Exercise Apply this criterion in the example above y′ = y2 sin(y) to verify
that y∞,k = kπ is a repeller for even k and an attractor for odd k.
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Non linear models in higher dimension We focus on the case n = 2 and
start with a two-dimensional nonlinear ODE-system y′ = F (y) where the right

hand side is defined by a vector field F : R2 → R2,

(
y1
y2

)
7→
(
F1(y1, y2)
F2(y1, y2)

)
with

two times continuously differentiable functions F1, F2 : R2 → R. A solution of

this equation y′ = F (y) is a function t 7→ y(t) =

(
y1(t)
y2(t)

)
.

As in the one-dimensional case, a stationary solution y∞ =
( y∞,1
y∞,2

)
is a zero of

the right-hand side F , i.e. y′∞ = 0 = F (y∞) =
(
F1(y∞,1,y∞,2)
F2(y∞,1,y∞,2)

)
= ( 0

0 ) .

For the (in-)stability of y∞, we distinguish between the two cases:

Stable case (attractor): Every solution y of a system y′ =F (y) that starts
close enough to y∞ converges against y∞ for t→∞.

Unstable case (repeller): No matter how close a solution y 6= y∞ is to y∞,
the values y(t) move away from y∞ for t→∞.

Exercises Find stationary solutions y′ = F (y) in the four examples

1. F

(
y1
y2

)
=

(
y1 − y21y2

1− y2 + y1y2

)

2. F

(
y1
y2

)
=

(
−y2ey1 + e · y2

y1 − y32

)

3. F

(
y1
y2

)
=

(
2y1y2 − 2y2
y1 − y22

)

4. F

(
y1
y2

)
=

(
a(y1y2 − y21)

cos(y1)− sin(y2)

)

where a > 0.

By linearising y′ = F (y) for the stationary solution y∞ we try to describe the
actual solution of the system and thereby make a decision about the stability.
To do this, we first need the two-dimensional Taylor expansion:

Fact (Two-dimensional Taylor expansion). Let f : R2 → R ∈ C2(R2,R). Then

f(x1 + h1, x2 + h2) = f(x1, x2) +
∂f(x1, x2)

∂x1
h1 +

∂f(x1, x2)

∂x2
h2 + ThO.

For a suitable constant C one estimates |ThO| < C(h21 + h22).

Again ThO denotes terms of higher order and thus summarises all expressions
in h1 and h2 of the form h21, h

2
2, h1 · h2, . . ..

As in the one-dimensional case for the linearisation we start with an Ansatz by
a perturbation function h, i.e. y(t) = y∞ + h(t). In the ODE-system y′ = F (y)
we get y′ = (y∞ + h(t))′ = y′∞︸︷︷︸

=0

+ h′ = F (y∞ + h).

For the right-hand side F (y∞ + h) we apply Taylor to F1, F2 : R2 → R and
express this compactly as a matrix-vector product

h′ = F (y∞ + h) =

(
F1(y∞,1 + h1, y∞,2 + h2)
F2(y∞,1 + h1, y∞,2 + h2)

)
= . . .
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. . . =

(
F1(y∞,1, y∞,2)
F2(y∞,1, y∞,2)

)

︸ ︷︷ ︸
=0

+




∂F1(y∞,1,y∞,2)
∂y1

∂F1(y∞,1,y∞,2)
∂y2

∂F2(y∞,1,y∞,2)
∂y1

∂F2(y∞,1,y∞,2)
∂y2




︸ ︷︷ ︸
=DF (y∞)

(
h1
h2

)
+ ThO.

In the process of linearisation we abandon the ThO and get a homogeneous
linear ODE-system h′ = DF (y∞)h and we know how solve such a linear system.
The exponential of the matrix DF (y∞) delivers the solution h(t) = etDF (y∞)h0
where h0 = h(0) is the initial vector.

With y = y∞ + h h = y − y∞ and with y(0) = y0 also h0 = y0 − y∞ and
further h(t) = etDF (y∞)h0

 y(t)− y∞ = etDF (y∞)(y0 − y∞) y(t) = y∞ + etDF (y∞)(y0 − y∞)

Let’s summarise (This procedure works also for F : Rn → Rn):

Let y′ = F (y) be a nonlinear ODE-system with vector field F : R2 → R2.
To find an approximation of a solution y = ( y1y2 ), we can proceed as follows:

1. Calculate stationary solutions y∞ =

(
y∞,1
y∞,2

)
. If there are any, cal-

culate DF =

(
∂F1

∂y1
∂F1

∂y2
∂F2

∂y1
∂F2

∂y2

)
. The matrix is the Jacobian matrix, ac-

cording to C. Jacobi (1804 – 1851)

2. Insert each y∞ in the Jacobian matrix

DF (y∞) =

(
∂F1(y∞,1,y∞,2)

∂y1

∂F1(y∞,1,y∞,2)
∂y2

∂F2(y∞,1,y∞,2)
∂y1

∂F2(y∞,1,y∞,2)
∂y2

)
∈M2×2

3. The associated linear system provides an approximation solution.
With initial y(0) = y0 one gets y(t) = y∞ + et·DF (y∞)(y0 − y∞).

Example Let y′ = F (y) with F :

(
y1
y2

)
7→
(

1−2y1+y1y2
3−2(y1+y2)+y1y2

)
.

For y∞ = ( 1
1 ) as a fixed point the Jacobian matrix becomes DF (1, 1) =

(−1 1
−1 −1

)

with λ1 = −1 + i and λ2 = −1− i as EVal. If we plot the vector fields we see a
similar behauvior locally close to the fixed point.

y

x
0 1 2

0

1

2

y

x
0 1 2

0

1

2

non linear Linear approximation
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When does the linearisation describe the solution? With linearisation,
we have a well-defined procedure to transform the solution of a nonlinear
system y′ = F (y) into the solution of a linear system. Now we want to know
whether and how this approximation provides information about the solution
of y′ = F (y). To do this, we use the following result:

Fact (Hartman-Grobman1(1959/60)). Let F : R2 → R2 a vector field with
fixed point y∞ =

( y∞,1
y∞,2

)
and Jacobian matrix DF (y∞). If each eigenvalue of

DF (y∞) has real part 6= 0, the solution of the linearised system approximates
the true solution of the non-linear equation y′ = F (y) in a neighborhood of y∞.
The theorem also applies to F : Rn → Rn.

As an example, we consider the qualitative solution behaviour of a solution
w.r.t. y∞ = ( 0

0 ) for the linearisation. Using the methods for linear models
we had the the following classification given by the EVal. Without knowing
the solution, that starts nearby y∞, exactly, we can say something about its
behaviour, applying the EVal of DF (y∞).

1. EVal λ1, λ2 real

λ1, λ2 < 0: stable λ1, λ2 > 0 : instable λ1 < 0 < λ2: saddle point

2. EVal λ1, λ2 = λ1

real part < 0: stable real part > 0: instable real part = 0: center

Note that the theorem does not work in the case of a center.

Exercises: Decide stability in the three cases of the above exercise:

2. y∞ =

(
y∞,1
y∞,2

)
with y∞,1 > 0 und y∞,2 > 0.

3. y∞ =

(
y∞,1
y∞,2

)
with y∞,1 > 0 und y∞,2 > 0.

4. y∞ =

(
π/4
π/4

)
.

1According to P. Hartman (1915 – 2015) and D. Grobman
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Part II

Euclidean Spaces and
Fourier Series
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Chapter 5

Fourier via Integration

The idea of Fourier (Jean-Baptiste Joseph Fourier, 1768 – 1830) was: Try to
express the values f(x) of a 2π-periodic function as

f(x) =
1

2
a0 +

∞∑

k=1

(akcos(kx) + bksin(kx)).

We are not restricted to the case of period 2π and there are actually quite simple
formulae for ak, bk and there are little assumptions on f .

5.1 Periodic Functions

Definition. A function f : R→ R is called T -periodic if for a positive T the
values are f(x+T ) = f(x) for all x ∈ R. The smallest period of f is the prime
periode.

Given a function f : [a, b[ → R on an interval. This can be extended to a

periodic extension f̃ : R → R. It is common to denote f̃ again with f , but
usually only on [a, b[ one knows f̃(x) = f(x). One might adjust f̃(x).

x
a b = a+ T

In this example we construct an T -periodic with T = b− a.

Exercises

1. Let f : [−1, 1[→ R a function with f(x) = x. Let f̃ : R → R be the
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continuation with period 2. Sketch the graph of f̃ in ]−3, 3[ and determine

the term f̃(x) for x ∈ [1, 2[.

x

f̃(x)

2 4−2−4

2

−2

2. Let f : [0, 1[→ R with f(x) = 1− x. Let fO be the odd continuation of f
with period 2 and fE be the even continuation of f with period 2. Sketch
both graphs in ]− 4, 4[ .

fO(x)

2 4−2−4

2

−2

x

fE(x)

2 4−2−4

2

−2

3. Let f : [0, π[→ R with f(x) = x2. Let fO be the odd continuation of f
with period 2π and fE be the even continuation of f with period 2π.
Sketch both graphs for −3π < x < 3π.

x

fO(x)

π 2π 3π−π−2π−3π
x

fE(x)

π 2π 3π−π−2π−3π

4. Let y1(t) = y1,0e
−bt and y2(t) = y1,0(1− e−bt). Determine T and Ti, if the

values y1(t) and y2(t) are bounded as indicated below.

t

y1(t)

y

y M

a

T
a

2T
a

3T t

y2(t)

Y2

Y1

a

a

a

T1
a

T2
a

T3
a

T4
a

T5
a

T6
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Facts. 1. If f1, f2, . . . , fn are with period T any

n∑

i=1

αifi has period T , also

any (finite) products of fi.

2. By substitution we can change the period, ie. if f is T -periodic, the func-

tion g with g(x) = f

(
Tx

2π

)
is 2π-periodic:

g(x+ 2π) = f

(
T (x+ 2π)

2π

)
= f

(
Tx

2π
+ T

)
= f

(
Tx

2π

)
= g(x)

Thus the developed theory for period 2π can be generalised to an T -periodic
function.

5.2 Trigonometric Polynomial and Series

Definition. A Function R→ R, x 7→ a0
2

+

N∑

k=1

(ak cos(kx)+bk sin(kx)) is called

Trigonometric Polynomial of degree N - with period 2π. If we set N =∞,

we get Trigonometric Series
a0
2

+

∞∑

k=1

(ak cos(kx) + bk sin(kx)).

If the series converges (e.g. for all x), the sum an 2π-periodic function.

With these trigonometric polynomials, the values f(x) of a given function f can
be approximated and, with the trigonometric series, they can even be repre-
sented exactly. We therefore examine the questions: How can we approximate

periodic f , for which f und which x is f(x) =
a0
2

+

∞∑

k=1

(ak cos(kx) + bk sin(kx))

and how to compute ak and bk?

Example Trigonometric Addition Theorem Without developing further
theory we get representations like

cos2(x) =
1

2
+

1

2
cos(2x)

sin3(x) =
3

4
sin(x)− 1

4
sin(3x)

(cos2 sin3)(x) =
1

8
sin(x) +

1

16
sin(3x)− 1

16
sin(5x)

(cos3 sin2)(x) =
1

8
cos(x)− 1

16
cos(3x)− 1

16
cos(5x).

There is f(x) on the left and a trigonometric polynomial on the right, with only
two or three coefficients ak 6= 0 or bk 6= 0.

Exercise In the fourth example, a1 = 1
8 and a3 = a5 = − 1

16 . Determine the
coefficients for the other examples too.
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The equations above usually follow using the complex numbers (Euler’s formu-
lae) and the binomial relation (a+b)n =

∑n
k=0

(
n
k

)
akbn−k. For Euler’s formulae,

we recall that the Taylor series (cp. Calculus) applies:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
. . .

i sin(x) = ix− ix3

3!
+
ix5

5!
− ix7

7!
. . .

+

cos(x)+i sin(x) = 1 + ix− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
. . .= eix

From (I): eix = cos(x) + i sin(x) and (II) e−ix = e−ix = cos(x)− i sin(x) follows
by addition and subtraction (I)± (II)

eix + e−ix

2
= cos(x) and

eix − e−ix

2i
= sin(x)

Example

cos2(x) =

(
eix + e−ix

2

)2

=
1

4

((
eix
)2

+ 2eix · e−ix +
(
e−ix

)2)

=
1

4

(
2 + ei2x + e−i2x

)

=
1

2
+

1

4

(
ei2x + e−i2x

)
=

1

2
+

1

4
(2 cos(2x))

=
1

2
+

1

2
cos(2x)

Thus ak = . . . and bk = . . .

Search for Fourier coefficients with integration In order to get formulae
for ak and bk we need some integration. Most significant is

Fact (Trigonometric Orthogonality relations). For n, k = 0, 1, 2, . . . we have

1.

∫ π

−π
cos(kx) cos(nx)dx =





2π n = k = 0

π n = k 6= 0

0 n 6= k

2.

∫ π

−π
sin(kx) sin(nx)dx =





0 n = k = 0

π n = k 6= 0

0 n 6= k

3.

∫ π

−π
sin(kx) cos(nx)dx = 0

The name will be explained later.

Exercise Check one of these relations!
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Deducing Fourier coefficients via integration We assume that values are
given by f(x) = a0/2 +

∑∞
k=1(ak cos(kx) + bk sin(kx)). If we multiply on both

sides with cos(nx) and calculate the integral, we get an expression for ak and bk.

∫ π

−π
f(x) · cos(nx)dx =

∫ π

−π

a0
2
· cos(nx)dx

+

∞∑

k=1

ak

∫ π

−π
cos(kx) cos(nx)dx+

∞∑

k=1

bk

∫ π

−π
sin(kx) cos(nx)dx

=

∫ π

−π

a0
2
· cos(nx)dx+

∞∑

k=1

ak

∫ π

−π
cos(kx) cos(nx)dx+ 0.

In the step to the second equal sign, the theory allows the sum and integral
signs

∑
↔
∫

to be swapped. The red term in the third addend disappears
due to the third orthogonal identity above. The following applies to the first
summand:

∫ π

−π

a0
2
· cos(nx)dx =





0 n 6= 0
∫ π

−π

a0
2
dx =

a0
2

(2π) = a0 · π n = 0

For n = 0, 1, 2, 3, . . . only remains

∞∑

k=1

ak

∫ π

−π
cos(kx) cos(nx)dx =

{
0 k 6= n

an · π k = n, because of 1. in Orthogonality

Thus an =
1

π

∫ π

−π
f(x) cos(nx)dx for every n.

If we multiply f(x) = a0/2 +
∑∞
k=1(ak cos(kx) + bk sin(kx)) by sin(nx), we get

the formulas for the bk result due to the same reason. We summarise and define:

Definition. Let f be a 2π-periodic function. The numbers

ak =
1

π

∫ π

−π
f(x) cos(kx)dx, bk =

1

π

∫ π

−π
f(x) sin(kx)dx

are called Fourier coefficients of f . They define the Fourier series of f

a0
2

+

∞∑

k=1

(ak cos(kx) + bk sin(kx)) .

Exercise How do the formulae for ak and bk simplify in case of an odd or
even f?

Use that sin is odd and cos is even and check that the product of two odd
functions is even and the product of two even functions is even. Furthermore:
The product of an odd and of an even function is odd. You should get that if f

is even then ak =
2

π

∫ π

0

f(x) cos(kx)dx and bk = 0. If f is odd, we get switched

roles with ak = 0 and bk =
2

π

∫ π

0

f(x) sin(kx) dx.
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Exercises Compute ak and bk.

1. For the functions in Exercise 3. above.

2. For f : [−π, π[→ R with f(x) = 3|x| − 2 and 2π-periodic continuation.

3. For f : [−π, π[→ R with f(x) = sin3(2x) and 2π-periodic continuation.
Compare your results with the formulae you get using one of Euler’s for-

mula sin(α) = 1
2i (e

iα − e−iα) and sin3(α) =
1

8i3
(eiα − e−iα)3 = . . .

Pointwise convergence of Fourier series Since we got the formulae for
the coefficients, we wonder for which f and x indeed the values are given by

f(x) = a0
2 +

∞∑
k=1

ak cos(kx) + bk sin(kx)?

Theory provides us with an answer by defining a function f : [−π, π] → R
piecewise continuous differentiable, if f is continuous differentiable outside
a finite number of points and in each exceptional or boundary point z exits the
limits lim

x→z
x<z

f(x) =: f(z−), lim
x→z
x>z

f(x) =: f(z+), lim
x→z
x<z

f ′(x), lim
x→z
x>z

f ′(x) ∈ R

Fact (Theorem by Dirichlet1). Let f : [−π, π]→ R be as above.

• Its Fourier series converges → f(x) for each continous point x ∈ ]−π, π[.

• If f jumps at z the Fourier series converges towards
1

2
(f(z+) + f(z−)).

Gibbs-Phenomenon Josiah Willard Gibbs, 1839 - 1903

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

π−π

π

−π

For each Fourier polynomial, the convergence at the jumps indicates the so-
called Gibbs phenomenon. The small tower that forms to the left and right
of the discontinuity is called Gibbs tower. It does not become smaller with
increasing N , only narrower.

1Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859
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5.3 Solving ODE with Fourier

We apply the concept of Fourier to find a 2π-periodic solution of the 1. order
ODE y′(x) + y(x) = f(x) for

x

f(x)

−π 0 π 2π 3π

π

Ansatz and Comparison We make the Ansatz with assuming the a solution

y can be represented by its Fourier series y(x) =
α0

2
+

∞∑

k=1

αk cos(kx)+βk sin(kx)

and hence y′(x) =

∞∑

k=1

−kαk sin(kx) + kβk cos(kx). This gives on the left side

of the ODE:

y′(x) + y(x) =
α0

2
+

∞∑

k=1

(αk+kβk) cos(kx) + (βk−kαk) sin(kx)

y′(x) + y(x)
ODE
= f(x) =

a0
2

+

∞∑

k=1

ak cos(kx) + bk sin(kx) (Fourier for f).

As soon we have ak, bk for f , we get the coefficients αk, βk for y via comparison.
Since f is an even function the bk = 0 and we get first βk − kαk = bk = 0 and

then βk = kαk .

Further ak = αk + kβk =αk + k2αk = αk(1 + k2) and therefore αk =
ak

1 + k2
.

Particular solution By symmetrie of the even function f we compute ak

with ak =
2

π

∫ π

0

x cos(kx)dx. If k = 0 ist a0 = π and by the above 0 = α0.

The coefficients with k > 0 need some Partial Integration (P.I., see detail

calculation below) ak =
2

π

∫ π

0

x cos(kx)dx = P.I.. . . =

{
0 if k even
−4
k2π if k odd

ak =
2

π

∫ π

0

|x| cos(kx)dx =
2

π

∫ π

0

x cos(kx)dx

=
2

π

(
x

sin(kx)

k

∣∣∣∣
π

0︸ ︷︷ ︸
=0

−
∫ π

0

sin(kx)

k
dx
)

=
2

π

cos(kx)

k2

∣∣∣∣
π

0

=
2

k2π
(cos(kπ)− 1)

=

{
0 if k > 0 even
−4
k2π if k odd
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Solution As βk = kαk and αk =
ak

1 + k2
we get

αk =

{
0 k even
−4

k2(1+k2)π k odd
βk =

{
0 k even
−4

k(1+k2)π k odd

With odd indices k = 2n+ 1:

y(x) =
π

2
− 4

π

∞∑

n=0

cos((2n+ 1)x)

(2n+ 1)2(1 + (2n+ 1)2)
+

sin((2n+ 1)x)

(2n+ 1)(1 + (2n+ 1)2)

x

y(x)

2 4 6 8 10 12

1

2

Exercise/Example We can apply this also recipe for an 2nd order ODE:

Let 4y′′(x) + y(x) = f(x) = |x| for x ∈ [−π, π] (ODE). We find the solution
with the following steps

1. Solve the homogeneous equation 4y′′(x) + y(x) = 0.

2. Determine the coefficients of the 2π-periodic Fourier series of |x| on [−π, π[.
and find a particular solution yp of ODE with the Ansatz for an even

function yp(x) =

∞∑

k=0

Ak cos(kx).

3. Combine this to get the general solution of the ODE. Eventually find the
solution (ODE) with initial values y

(
−π2
)

= y
(
π
2

)
= 0.

Let’s do this.

1. Write 4y′′(x) + y(x) = 0  y′′(x) + 1
4y(x) = 0 to get with the character-

istic equation yH(x) = C1 cos( 1
2x) + C2 sin( 1

2x).

2. The Fourier coefficients for the right hand side f(x) = |x| are given in the

above example by bk = 0, a0 = π and ak =

{
0 if k > 0 even
−4
k2π if k odd.

The Ansatz yp(x) =

∞∑

k=0

Ak cos(kx) in (ODE) on the left hand side gives:

4

( ∞∑

k=0

Ak cos(kx)

)′′
+

∞∑

k=0

Ak cos(kx) = 4

∞∑

k=1

−k2Ak cos(kx)+

∞∑

k=0

Ak cos(kx).
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Then write both sides of (ODE) as Fourier series:

4

∞∑

k=1

−k2Ak cos(kx) +

∞∑

k=0

Ak cos(kx) =
a0
2

+

∞∑

k=1

ak cos(kx).

Identify the Fourier coefficients of both sides in

4

∞∑

k=1

−k2Ak cos(kx) +

∞∑

k=0

Ak cos(kx) =
a0
2

+

∞∑

k=1

ak cos(kx).

to get Ak =
ak

1− 4k2
for k 6= 0 and A0 =

a0
2

=
π

2
.

3. The general solution is therefore:

y(x) = yH(x) + yP (x)

= C1 cos

(
1

2
x

)
+ C2 sin

(
1

2
x

)
+
π

2
+

∞∑

k=0

A2k+1 cos((2k + 1)x).

4. As cos
(
(2k + 1)π2

)
= 0 for all k the initial condition y(−π2 ) = y(π2 ) = 0

implies that C1√
2
− C2√

2
+ π

2 = 0 and C1√
2

+ C2√
2

+ π
2 = 0. If you solve the linear

system you get C1 =
−π√

2
and C2 = 0 and eventually

y(x) =
−π√

2
cos

(
1

2
x

)
+ yP (x).

5.4 Generalisation

We know by Dirichlet’s Theorem which 2π-periodic functions f and which x
allow to write the values f(x) = a0

2 +
∑∞
k=1(ak cos(kx) + bk sin(kx)) as values

of the Fourier-series. And we compute the Fourier-coefficients ak and bk using
the formulae ak = 1

π

∫ π
−π f(x) cos(kx)dx, bk = 1

π

∫ π
−π f(x) sin(kx)dx.

What is the situation in the case of a period T 6= 2π?

Let f : [−T2 ,
T
2 ] → R be a piecewise continuous differentiable function. By

substitution we get a function g with g(x) = f

(
Tx

2π

)
defined on [−π, π]. This

has period 2π and therefore we use our knowledge to write this as a Fourier
series

g(x)
∗
=
a0
2

+

∞∑

k=1

ak cos(kx) + bk sin(kx)

With a re-substitution f(x) = g

(
2πx

T

)
this defines the T -periodic Fourier series

of f by f(x) =
a0
2

+

∞∑

k=1

ak cos
(
k

2πx

T

)
+ bk sin

(
k

2πx

T

)
.
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To get the coefficient ak, bk in this series we set z = z(x) =
2πx

T
in

g(z)
∗
=
a0
2

+

∞∑

k=1

ak cos(kz) + bk sin(kz)

and apply substitution rules for integration

ak =
1

π

∫ π

−π
g(z) cos(kz)dz =

1

π

∫ T/2

−T/2
g
(2πx

T

)
cos
(
k

2πx

T

)2π

T
dx

=
2

T

∫ T/2

−T/2
f(x) cos

(
k

2πx

T

)
dx.

If we use the same methods for the bk, and we can summarise:

Fact (Fourier series with period T ). Let f be a T -periodic function. Its

Fourier series is
a0
2

+

∞∑

k=0

ak cos
(
k

2πx

T

)
+ bk sin

(
k

2πx

T

)
where

ak =
2

T

∫ T/2

−T/2
f(x) cos

(
k

2πx

T

)
dx and bk =

2

T

∫ T/2

−T/2
f(x) sin

(
k

2πx

T

)
dx

Exercise Compute the coefficients ak and bk for the periodic functions in
Exercises 1. and 2. above.

Complex Version There is also a complex version that enables us to give a
more compact form that might be even offer a more efficient computation.

Let f be a function of the form f : R → C, t 7→ f(t) = g(t) + ih(t) ∈ C. To
integrate this we integrate real and imaginary part separately, i.e.

∫ b

a

f(t)dt =

∫ b

a

g(t)dt+ i

∫ b

a

h(t)dt.

With Euler’s relations eix+e−ix

2 = cos(x), e
ix−e−ix

2i = sin(x) and 1
i

∗
= −i we get

a translation Real Fourier series ←→ Complex Fourier series

a0
2

+

∞∑

k=1

ak cos
(
k

2πx

T

)
+ bk sin

(
k

2πx

T

)
←→

∞∑

k=−∞
cke

ikx

f(x) =
a0
2

+

∞∑

k=0

akcos(kx) + bksin(kx) Real Fourier series

=
a0
2

+

∞∑

k=0

ak
2

(eikx + e−ikx) +
bk
2i

(eikx − e−ikx) Euler

=
1

2

(
a0 +

∞∑

k=1

(ak − ibk)eikx +

∞∑

k=1

(ak + ibk)e−ikx
)

Minus sign,
1

i
= −i

=

∞∑

k=−∞
cke

ikx Complex Version
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Hence ck =





ak − ibk
2

if k > 0
a0
2

if k = 0

a−k + ib−k
2

if k < 0

resp.





ak = ck + c−k
a0 = 2c0

bk = i(ck − c−k)

Closed Formula for complex coefficient In the above dictionary we need
the real ak and bk to determine the complex ck. There is also a direct way to
get to the ck. We discuss this in the example T = 2π and k > 0:

1

2π

∫ π

−π
f(x)e−ikxdx =

1

2π

∫ π

−π
f(x)(cos(kx)− i sin(kx))dx

=
1

2

( 1

π

∫ π

−π
f(x) cos(kx)dx− i 1

π

∫ π

−π
f(x) sin(kx)dx

)

=
1

2
(ak − ibk) ck =

1

2π

∫ π

−π
f(x)e−ikxdx

We summarise

Fact (Complex Fourier series). Let f : [−T2 ,
T
2 [ → C. Then the complex

Fourier series of f is

∞∑

k=−∞
cke

2kπix/T where ck =
1

T

∫ T
2

−T
2

f(x)e−2kπix/T dx.

1. For f ∈ Cn(R) with period T converge the coefficients ck → 0 for k →∞
faster for n increasing.

2. In formula for ck integration possible for any intervall of length T .

Caveats Computation ck In the above Formula for ck the integration is
possible for any interval of length T . But be careful: One must adjust the
term f(x) according to the choice of the interval.

Example Assume f : R→ R is given as an T -periodic extension of

A) [0, T [→ R, x 7→ g(x) or of B)
[
−T2 ,

T
2

[
→ R, x 7→ h(x)

The coefficient are computed by the above formula

A) ck =
1

T

∫ T

0

g(x) exp (. . .) dx B) ck =
1

T

∫ T
2

−T
2

h(x) exp (. . .) dx. But don’t

mix, e.g. ck =
1

T

∫ T

0

h(x) exp

(
−k 2πi

T
x

)
dx

Exercises

1. Let f(x) = e−x für 0 ≤ x < 1 with period 1

x
−1 1 2 3
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We get

ck =
1

T

∫ T

0

exp(−x) exp

(
−k 2πi

T
x

)
dx =

∫ 1

0

exp (−(1 + 2kπi)x) dx

= − 1

1 + 2kπi
exp (−(1 + 2kπi)x)

∣∣∣∣
1

0

= − 1

1 + 2kπi
(exp (−1− 2kπi)− 1)

=
1− 1/e

1 + 2kπi
 ak = ck + c−k =

1− 1/e

1 + 2kπi
+

1− 1/e

1− 2kπi
=

2− 2/e

1 + 4k2π2

Compute ak, bk for this f via real formulae.

2. Compute ak, bk and ck for

(a) the periodic functions above.

(b) g with g(t) = 3−t, t ∈ [−1, 1[ and 2-periodic continuation.

Exercise: Electric circuit with an external signal

1. Compute the Fourier coefficients for the T -periodic continuation of h with

h(t) =

{
4 cos

(
2πt
T

)
, for t ∈ [−T4 ,

T
4 ]

0, for t ∈ [−T2 ,−
T
4 [∪]T4 ,

T
2 [
, T > 0.

2. Let h be the function above.

The ODE LI ′(t) + RI(t) = h(t) models an electric
circuit with an external signal by h.

R

L

Find a particular solution and analyse the general solution for t→∞.

Note that h(t) =

∞∑

n=−∞
cne

2πnit
T and use the Ansatz Ĩn(t) = Ane

2πint/T

to solve LĨ ′n(t) +RĨn(t) = cne
2πnit
T .
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Chapter 6

Fourier in LA disguise

Let C0([−π, π]) be the vector space of continuous functions on [−π, π]:

A trigonometric polynomial
a0
2

+

N∑

k=1

(ak cos(kx) + bk sin(kx)) is linear com-

bination of functions c0, ck and sk with c0(x) = 1√
2π
, ck(x) = 1√

π
cos(kx) and

sk(x) = 1√
π

sin(kx) where k = 1, 2, . . . , N . The scaling is for later purposes and

will be revealed below.

Consider the subspace TN = 〈{c0, c1, s1, c2, s2 . . . , cN , sN}〉 ⊂ C0([−π, π]). If
we have a f ∈ TN , then there are αn and βm s.t.

f(x) =

N∑

n=0

αncn +

N∑

m=1

βmsm =
α0√
2π

+

N∑

k=1

(
αk√
π

cos(kx) +
βk√
π

sin(kx)

)

︸ ︷︷ ︸
Trigonometric polynomial

.

6.1 Euclidean Spaces

What is the connection of ak, bk and αk, βk and the Fourier coefficients?

And what do we do if f /∈ TN ⊂ C0([−π, π])? To understand this, we need more
theory. The idea is to try to find the best approximation of f by a function
P (f) ∈ TN in the subspace TN .

f

P (f)

Distance minimal

Subspace TN

We’ll see that the distance f − P (f) minimal, if P (f) is the orthogonal pro-
jection of f onto TN and that the approximation improves for increasing N .
For such a construction we need the notion of orthogonal and distance in
an abstract VS, e.g. C0([−π, π]).
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Recap Euclidean Rn In R2 we have the standard scalar product · for two

vectors a=

(
a1
a2

)
, b=

(
b1
b2

)
defined by a·b = a1b1+a2b2 = |a||b| cos(α) where |a|

is the norm |a| =
√
a · a.

Also a⊥b ⇐⇒ a · b = 0

Example:

(
x
y

)
⊥
(
y
−x

)

x

y

α

a

b

The natural generalisation of the case n = 2 is given by

〈x, y〉 =

n∑

i=1

xiyi where x =




x1
x2
...
xn


 , y =




y1
y2
...
yn


 .

Note There are other possibilities to define a scalar product on Rn.

For example

1. For n = 2 define 〈x, y〉 = 2x1y1 + 3x2y2.

2. With A ∈Mn×n invertible define 〈x, y〉 = (Ax)TAy.

Question What is an abstract scalar product? What do the constructions
have in common?

Definition (Scalar Product (SCP) on a VS V ). It is a map

〈 · , · 〉 : V × V → R, (a, b) 7→ 〈a, b〉

such that for all a, b, c ∈ V and λ ∈ R the following holds

Symmetry 〈a, b〉 = 〈b, a〉

Bilinear 〈a, b+ c〉 = 〈a, b〉+ 〈a, c〉
〈a, λb〉 = λ〈a, b〉 Due to symmetry also in 1st component

Positive definite 〈a, a〉 ≥ 0 and 〈a, a〉 = 0 only if a = 0

A Euclidean VS (V, 〈 · , · 〉) is a VS V with scalar product 〈 · , · 〉.
Two vectors a, b ∈ V are orthogonal ⇐⇒ 〈a, b〉 = 0.

Examples/Exercises On the vector space of functions V = C0([a, b]) we

define a SCP by 〈f, g〉 =

∫ b

a

f(x)g(x)dx.

1. Check that this is indeed a SCP.
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2. Let a = −π and b = π and ck, sk ∈ C0([−π, π]) with

c0(x) =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx)

Check that they fulfil the following equation

i. 〈cn, cn〉 = 1 und 〈cn, ck〉 = 0

ii. 〈sn, sn〉 = 1 und 〈sn, sk〉 = 0

iii. 〈ck, sn〉 = 0

Hence 1. ck⊥cn, 2. sk⊥sn, if k 6= n and 3. ck⊥sn. Use

i.

∫ π

−π
cos(kx) cos(nx)dx =





2π n = k = 0

π n = k 6= 0

0 n 6= k

ii.

∫ π

−π
sin(kx) sin(nx)dx =





0 n = k = 0

π n = k 6= 0

0 n 6= k

iii.

∫ π

−π
sin(kx) cos(nx)dx = 0

3. Consider SCP 〈f, g〉 =

∫ 1

−1
f(x)g(x) dx. True or False?

(a) Curve of function f where f(x) = x and of g where g(x) = −x
intersect orthogonal at zero, hence they are orthogonal with respect
to SCP.

(b) Let f be an odd and g an even function, hence they are orthogonal
with respect to SCP.

4. Let V = C[0, 1], with SCP 〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

(a) Compute 〈f, g〉, where f(t) = 1− 3t2 and g(t) = t− t3.

(b) Compute 〈f, g〉, where f(t) = 5t− 3 and g(t) = t3 − t2.

6.2 Normed spaces

For two vectors v, w ∈ V with V = R2 or V = R3 our mathematical intuition
and Pythagoras tell us that the distance is |w − v|, where |v| =

√
〈v, v〉.

v w − v
w
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Morevover this leads to a notion of convergence: A sequence (vn)n∈N converges
to v ∈ V , if lim

n→∞
‖vn − v‖ = 0.

v0

v1
v2
v3

v∞

We want to get this concept for a general vector space.

Definition. 1. A norm on a real VS V is a map ‖ · ‖ : V → R, v 7→ ‖v‖
such that for all v, w ∈ V and λ ∈ R

• ‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0

• ‖λv‖ = |λ|‖v‖
• ‖v + w‖ ≤ ‖v‖+ ‖w‖ (∆− 6= Triangle inequality)

v w

v + w

A VS with norm is a normed VS (V, ‖ · ‖)

2. A vector v ∈ V with ‖v‖ = 1 is an unit vector.

3. Induced Norm The SCP induces a norm given by ‖v‖ =
√
〈v, v〉.

Examples

1. Euclidean norm on Rn ist given by ‖v‖ =

√√√√
n∑

k=1

v2k =
√
〈v, v〉.

2. On our favourite VS C0([a, b]) with SCP 〈f, g〉 =

∫ b

a

f(x)g(x)dx we get

norm ‖f‖L2 =

√∫ b

a

f2(x)dx and unit vectors c0, c1, s1, . . . , cN , sN with

c0(x) =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx).

Exercise: Check!

Exercise Let V = C[0, 1], with SCP 〈f, g〉 =

∫ 1

0

f(x)g(x) dx and induced

norm. Compute ‖f‖ for f with

f(t) = 1− 3t2, f(t) = 5t− 3, f(t) = t− t3, f(t) = t3 − t2.
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Rules in a VS with induced norm With ‖v‖ =
√
〈v, v〉 one derives several

useful relations

1. Pythagorean Theorem ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 i.e. if x⊥y we

get ‖x+ y‖2 = ‖x‖2 + ‖y‖2
x

y
x+ y

·

This follows from the definition ‖x+ y‖2 = 〈x+ y, x+ y〉 = . . .

2. The inequality by Cauchy-Schwarz |〈x, y〉| ≤ ‖x‖‖y‖
This needs little bit more thinking.

3. With |〈x, y〉| ≤ ‖x‖‖y‖ we conclude

(a) a definition of the angle α between two vectors x, y. It is α sucht

that cos(α) =
|〈x, y〉|
‖x‖‖y‖

as
|〈x, y〉|
‖x‖‖y‖

≤ 1,

(b) and the triangle inequality ∆− 6= for an induces norm.

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

Exercises Verify

1. If the distance from u to v equals the distance from u to −v, then u and
v are orthogonal.

2. ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

3. If x and y are orthogonal unit vectors, then ‖x− y‖ =
√

2.

4.
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
= 〈x, y〉

Abstract distance and convergence With a norm ‖·‖ we have ‖x−y‖ that
leads to a notion of distance between x, y ∈ V . If a distance becomes minimal,
we can speak of convergence:

Definition. A sequence of vectors (vn)n∈N in a normed V converges to v ∈ V ,
if lim
n→∞

‖vn − v‖ = 0.

Fact (Convergence independent of norm). Let V be a finite dimensional

vector space, i.e. dimV = n <∞ . For two norms ‖ · ‖a und ‖ · ‖b it holds:

lim
n→∞

‖vn − v‖a = 0 ⇐⇒ lim
n→∞

‖vn − v‖b = 0.

Cave That is not true in infinite dimensional VS!
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Bases and Coordinates in an Euclidean VS If a VS is equipped with a
SCP (and an induced norm) the notions of linear independency and coordinates
of a vector become handier.

Fact (Orthogonal implies linear independence). Let e1, e2, . . . , ek be unit
vectors, that are pairwise orthogonal. Then e1, e2, . . . , ek are linear indepen-
dent and form a basis in an k-dimensional subspace.

To very this start with α1, ..., αk ∈ R s.t. α1e1 + ...+ αkek
∗
= 0. We must show

that α1 = ... = αk = 0. For each 1 ≤ i ≤ k take SCP on both sides with the
vector ei: 〈ei, α1e1 + ...+ αkek〉

∗
= 〈ei, 0〉 = 0. Orthogonal and unity of the ei

with the bilinear property of the SCP guarantee

α1 〈ei, e1〉︸ ︷︷ ︸
=0

+...+ αi〈ei, ei〉+ ...+ αk 〈ei, ek〉︸ ︷︷ ︸
=0

= 0 =⇒ αi 〈ei, ei〉︸ ︷︷ ︸
=1

= αi = 0.

Hence for all 1 ≤ i ≤ k  α1 = ... = αk = 0.

This works too, if ei are simply orthogonal, length 1 is not needed or necessary:
As ei 6= 0 〈ei, ei〉 > 0, the equation αi〈ei, ei〉 = 0 delivers αi = 0.

Definition (Orthonormal basis). Let V be Euclidean and B = {e1, . . . , en} a
basis of unit vectors, that are pairwise orthogonal. Such a basis B is called

orthonormalbasis (ONB) and satisfies 〈ei, ej〉 =

{
1 falls i = j

0 falls i 6= j
.

Example By our observations above we know that the functions
c0, c1, s1, . . . , cN , sN with

c0(x) =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx),

form an ONB in TN ⊂ C0([a, b]).

Fact. There’s an algorithm that transforms a given basis of s finite-dimensional
VS to an ONB of VS, i.e. every finite-dimensional VS has an ONB.

Fact (Coordinates w.r.t. ONB). For an ONB B = {e1, . . . , en} of V we

can write a vector v ∈ V uniquely as v =

n∑

i=1

〈v, ei〉ei , i.e. the k-coordinate

w.r.t. ONB B of v is the coefficient 〈v, ek〉.

Because Let v =

n∑

i=1

αiei be the unique representation w.r.t. ONB B. Now

we take the SCP of the given v and a basis vector ek and get

〈v, ek〉 =

〈
n∑

i=1

αiei, ek

〉
∗
=

n∑

i=1

αi〈ei, ek〉
∗∗
= αk,

using ∗ : Bilinearity of SCP and ∗∗ : 〈ei, ek〉 = 0 except = 1 if i = k.

Note As 〈v, ek〉 = the k-coordinate of v w.r.t. ONB B, it is much easier to
computer coordinate vector ϕB(v). No solving of linear system is needed.
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Exercises

1. What are the coordinates, if B = {e1, . . . , en} are just orthogonal? There-
fore, it is not necessary that the vectors have length 1.

2. Show in (a) and (b) that {u1, u2} and in (c) and (d) that {u1, u2, u3}
are orthogonal for R2 or R3, respectively. Then express x as a linear
combination of the u’s.

(a) u1 =

(
2
−3

)
, u2 =

(
6
4

)
, and x =

(
9
−7

)

(b) u1 =

(
3
1

)
, u2 =

(
−2
6

)
, and x =

(
−6
3

)

(c) u1 =




1
0
1


 , u2 =



−1
4
1


 , u3 =




2
1
−2


 , and x =




8
−4
−3




(d) u1 =




3
−3
0


 , u2 =




2
2
−1


 , u3 =




1
1
4


 , and x =




5
−3
1




Application ONB to Fourier Let TN be the subspace with

ONB c0(x) =
1√
2π
, ck(x) =

1√
π

cos(kx), sk(x) =
1√
π

sin(kx). If f ∈ TN we

get the coordinates using the SCP f = 〈f, c0〉c0 +

N∑

k=1

〈f, ck〉ck + 〈f, sk〉sk

= 〈f, c0〉
1√
2π︸ ︷︷ ︸

=
a0
2

+

N∑

k=1

〈f, ck〉
1√
π︸ ︷︷ ︸

=ak

cos(kx) + 〈f, sk〉
1√
π︸ ︷︷ ︸

=bk

sin(kx)

This construction returns our known formulae for the Fourier coefficients:

a0 =
2√
2π

∫ π

−π
f(x)

1√
2π
dx =

1

π

∫ π

−π
f(x)dx

ak =
1√
π

∫ π

−π
f(x)

1√
π

cos(kx)dx =
1

π

∫ π

−π
f(x) cos(kx)dx

bk =
1√
π

∫ π

−π
f(x)

1√
π

sin(kx)dx =
1

π

∫ π

−π
f(x) sin(kx)dx

Orthogonal Projection as best approximation What can we do in the
case of f /∈ TN? We use a construction that allows to project f onto the
subspace TN . Then we apply that this projection is the best possible approxi-
mation.

x
z

y

P (x) = x̂

orthogonal x

P (x)

Distance = ∥x− P (x)∥ minimal

Subspace U
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Fact (Orthogonal Projection onto vector or subspace). Let V be a
normed VS.

1. The projection of x onto a vector y 6= 0 is P (x) =
〈x, y〉
〈y, y〉

y.

2. Let U be a subspace of V and e1, . . . , en an ONB of U .

Then P (x) =

n∑

i=1

〈x, ei〉ei is the projection of x ∈ V onto U . Among the

vectors in U has the projection P (x) the minimal distance from x.

Exercises

1. Compute the orthogonal projection of

(a)

(
1
7

)
onto the line through

(
−4
2

)
and the origin.

(b)

(
1
−1

)
onto the line through

(
−1
3

)
and the origin.

2. Verify that {u1, u2} is an orthogonal set, and then find the orthogonal
projection of y onto 〈{u1, u2}〉.

(a) For y =



−1
4
3


 , u1 =




1
1
0


 , u2 =



−1
1
0




(b) For y =




6
3
−2


 , u1 =




3
4
0


 , u2 =



−4
3
0




3. Let L be the subspace generated by y. Show that the projection is inde-
pendent of basis vector.

4. Show: The projection is linear, i.e. P (αx+ βy) = αP (x) + βP (y).

Application to Fourier series We are using this to get a new approach for

the Fourier coefficients: Let V = C0([−π, π]) with SCP 〈f, g〉 =

∫ π

−π
f(x)g(x)dx

and U = TN the subspace with ONB c0, c1, . . . cN , s1, . . . sN .

The projection PN (f) of f ∈ V onto TN is given by the construction:

PN (f) = 〈f, c0〉c0 +

N∑

k=1

〈f, ck〉ck + 〈f, sk〉sk =
a0
2

+

N∑

k=1

ak cos(kx) + bk sin(kx).

The coefficients ak and bk are as above

ak =
1

π

∫ π

−π
f(x) cos(kx)dx bk =

1

π

∫ π

−π
f(x) sin(kx)dx

With increasing N , the approximation is improving, formally:

‖f − PN (f)‖2L2 =

∫ π

−π
(f − PN (f))2dx→ 0 for N →∞

67



Remarks on projection

We claimed above: P (x) =

n∑

i=1

〈x, ei〉ei

is the projection onto U and has mini-
mal distance from x.

x

P (x)

Distance = ∥x− P (x)∥ minimal

Subspace U

We want to see x− P (x) ⊥ u for all u ∈ U .

〈x− P (x), ej〉 = 〈x, ej〉 − 〈P (x), ej〉 = 〈x, ej〉 − 〈
n∑

k=1

〈x, ek〉ek, ej〉

= 〈x, ej〉 −
n∑

k=1

〈x, ek〉〈ek, ej〉 = 〈x, ej〉 − 〈x, ej〉 = 0

How to conclude that distance between x and the projection P (x) is minimal,
i.e. ‖x− P (x)‖ ≤ ‖x− u‖ for all u ∈ U?
Let u ∈ U  P (x)− u ∈ U  (x− P (x)) ⊥ (P (x)− u). We get a right-angled
triangle with hypotenuse x− u = (x−P (x)) + (P (x)− u), where we now apply
Pythagorean’s theorem.

Orthogonal projection and decomposition

x
z

y

P (x) = x̂

orthogonal
x

z = (x − x̂)

P (x) = x̂

orthogonal

subspace U

• The orthogonal projection P (x) = x̂ =
〈x, y〉
〈y, y〉

y of x ∈ V onto a vector

y 6= 0 gives a decomposition x = x̂+ z with z⊥y.

• The projection P (x) = x̂ =

n∑

i=1

〈x, ei〉ei on a subspace U gives also a de-

composition x = x̂+ z with z⊥U . If x ∈ U then x̂ = x.

Orthogonal matrices An m × n-matrix A = (a1 a2 · · · an) is called
orthogonal if it satisfies ATA = En. It has the following properties:

1. The column vectors ai are pairwise orthogonal and ‖ai‖ = 1.

2. For x, y ∈ Rn it yields ‖Ax‖ = ‖x‖, (Ax) · (Ay) = x · y and

(Ax) · (Ay) = 0 ⇐⇒ x · y = 0,

i.e. the linear map x 7→ Ax preserves length and orthogonality.

3. Assume that the k column vectors of an orthogonal n× k-matrix A form
a basis of a subspace U of Rn.

Then the orthogonal projection of a vector x ∈ Rn is x̂ = AATx.

Fact ((Reduced) QR-decomposition). Let A be an m× n-matrix with lin-
early independent columns.

There exists an orthogonal m×)-matrix Q s.t. A = QR where R is an upper

triangular and invertible n× n-matrix with positive entries on its diagonal.
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Part III

Appendix

69



Eigenvalues and -vectors

In the course of our investigations the concept of eigenvalues and eigenvectors
has an crucial impact and application. Therefore it is appropriate to recall and
collect essential facts in more detail. First recall

Definition (Eigenvalues/-vectors). Let A be a quadratic matrix.

1. A number λ is called eigenvalue of A (EVal) if there is a vector v 6= 0

such that A · v = λv .

2. Each vector v 6= 0 is an eigenvektor of A (EVec) with respect to EVal λ,

if the equation A · v = λv is fulfilled.

Now we gather known properties and results. We don’t distinguish whether it
is a theorem or a simply conclusion.

Facts (Eigenvalues/-vectors). Let A = (aij) be a quadratic matrix.

Eigenspaces

1. If v1, v2 are EVec with the the same EVal λ the vector w = αv1 + βv2 is
also an EVec with EVal λ. With Eig(λ) we denote the subspace generated
by eigenvectors with respect to eigenvalues λ.

2. EVec with respect to different EVal are linear independent.

3. A basis formed by eigenvectors is called eigenbasis.

Finding EVal and EVec

4. We find EVec with EVal λ as solutions x 6= 0 of a homogeneous system of
linear equations (A− λ · En) · x = 0.

5. The EVal of a matrix A are exactly the zeroes of the characteristic poly-
nomial pA(λ) = det(A− λ · En).

6. As pA(λ) has degree n the fundamental theorem of Algebra implies that A
has n (complex) EVal λi with a multiplicity. Some of the λi might be real.

Thus pA(λ) = (λ− λ1) · (λ− λ2) . . . (λ− λn).
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Handy relations

7. The sum of the diagonal entries aii equals the sum of the EVal:

∑

i

aii = λ1 + λ2 + . . .+ λn

8. Moreover det(A) = λ1 · λ2 . . . λn and therefore: The inverse A−1 exists,

if and only if all λi 6= 0.

9. If we have an EVec v with λ and in addition A is invertible, then v is

an EVec of A−1 with EVal
1

λ
.

10. Assume that all coefficients of pA(λ) are real, e.g. in the case of aij ∈ R
only real entries. If λk is an EVal then the complex conjugate λk is an
EVal, too.

Application to a discrete model vn+1 = Avn Assume that we have a model

situation where we get a collection of m values or magnitudes x
(n)
1 , x

(n)
2 , . . . , x

(n)
m

after n timesteps. This assignment is a map n 7→ vn =



x
(n)
1

...
x(n)
m


 . If we wait one

time unit (1 TU) we get the vector vn+1 =



x
(n+1)
1

...
x(n+1)
m


.

What is the relation vn  vn+1? Let us assume this transition is linear, i.e.
there is a m × m-matrix A, such that vn+1 = Avn. We have the following
diagram that describes the situation.

n
explicit //

1 TU

��

vn ∈ Rm

recursive
��

n+ 1 // vn+1 = Avn = An+1v0 ∈ Rm

The recursive representation means that for determination of the vector vn+1

one needs all the vectors vn, vn−1, . . . , v0 and must compute n+1 times a matrix-
vector-product vi = Avi−1. In the explicit case the vector vn just depends on n.
Here one needs powers of the matrix A If we continue the iteration backwards,
we get:

vn+1 = Avn = A(Avn−1) = A(A(Avn−2)) = . . . =

n+1 times︷ ︸︸ ︷
A(A(A(. . . A v0))) . . .)

= An+1v0

Using the calculation rules of matrix multiplication, it becomes

A(A(. . . A) . . .)︸ ︷︷ ︸
n+1 times

= (AAA . . . A)︸ ︷︷ ︸
n+1 times

= An+1.

It results in an explicit representation by vn = Anv0.
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What can we say about the sequence (vn)?

We might ask ourselves how the values x
(n)
i develop over time, for example

1. Is there an equilibrium, a monotony or an asymptotic behaviour?

2. Are there starting values x
(0)
i at which nothing happens? That is,

x
(0)
i = x

(1)
i = x

(2)
i = . . . i = 1, 2, . . .m

3. Is it possible that the values vary, but the ratio does not?

x
(n)
i

x
(n)
j

=
x
(n+1)
i

x
(n+1)
j

, x
(n+1)
j 6= 0 6= x

(n)
j ?

Example/Exercise Check that for A =

(
0 1

2
1
3

6 0 −6
0 1

2 0

)
we have A3 = E3.

For a sequence vn = Avn−1 = Anv0 we get a periodic behaviour:

v3 = A3v0 = v0 and thus vn+3 = vn.

What does A3 = E3 mean for the eigenvalues of the matrix A?

Note that here m = k = 3. In general, k 6= m might also be the case.

Further examples Here is a list of numerical examples done by the computer.
We want to understand and investigate those results by using EVal and EVal.

Matrix Initial vector Series

1.

(
0 0 6
1
2 0 0

0 1
3 0

) (
12
12
12

)
Cycle with 3 TU

2.

(
0 0 6
1
2 0 0

0 1
3 0

) (
24
12
4

)
equilibrium

(
24
12
4

)

3.

(
0 1 3
1
2 0 0

0 1
3 0

) (
10
10
10

)
convergence to equilibrium

(
24
12
4

)

4.

(
0 2 3
1
2 0 0

0 1
4 0

) (
1
1
1

)
Each sequences (xn+1/xn),(yn+1/yn) and

(zn+1/zn) converges to a fixed number λ.
The sequence (vn/|vn|) of the normalised vn

converges.

We leave the analysis of first two examples as an exercise, see below. In the
3. example we have complex EVal, that will be studied after the 4. example.

Example with dominant EVal With A =

(
0 2 3
1
2 0 0

0 1
4 0

)
and v0 =

(
1
1
1

)
we define

an iteration: wn+1 =
( xn+1
yn+1
zn+1

)
= Awn = An+1w0.
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Why do the sequences of the quotients (xn+1/xn), (yn+1/yn), (zn+1/zn) each
converge to a fixed number λ?

For large n we get xn+1/xn ≈ λ, yn+1/yn ≈ λ, zn+1/zn ≈ λ or

xn+1 ≈ λ · xn, yn+1 ≈ λ · yn, zn+1 ≈ λ · zn

and as vectors Awn = wn+1 =
( xn+1
yn+1
zn+1

)
≈
(
λxn

λyn
λzn

)
= λ

(
xn
yn
zn

)
= λwn. This means

that for increasing n the vector wn becomes more and more an EVec of A of
the EVal λ, and that the vectors w0, w1, w2, . . . point more and more in the
direction of an EVec.

To confirm this we use the characteristic polynomial pA(λ) = −λ3 + λ + 3
8

(Check this.). It provides the eigenvalues λ1 = − 1
2 and λ2/3 = 1

4 (1 ∓
√

13)
(Check again). As eigenvectors we choose

v1 =




2
−2
1


 , v2 =




7−
√

13

1−
√

13
1


 , v3 =




7 +
√

13

1 +
√

13
1


 .

Check, that indeed Avi = λivi for i = 1, 2, 3.

Application to vn+1 = Avn

1. The three EVal are distinguished, i.e. v1, v2, v3 ∈ R3 form an eigenbasis.

2. Each initial vector w0 can be written as w0 = α1v1 + α2v2 + α3v3 where
α1, α2 and α3 are unique

3. After n TU with the linear matrix-vector-product we get

wn = α1λ
n
1 v1 + α2λ

n
2 v2 + α3λ

n
3 v3.

4. Since |λ1|, |λ2| < 1 and λ3 > 1, then λn1 , λ
n
2 → 0 and λn3 →∞.

5. If α3 = 0, then wn → 0, e.g. w0 = v1 + v2 =

(
9−
√
13

−1−
√
13

2

)
. If α3 6= 0,

it follows that the sequence w0/|w0|, w1/|w1|, w2/|w2|, . . . of normalised
vectors converges to the normalised EVec v3/|v3| corresponding to the
EVal λ3.

6. This applies to any choice of EVec v1, v2, v3 ∈ R3.

Example complex EVal Let A =

(
0 1 3
1
2 0 0

0 1
3 0

)
and v0 =

(
10
10
10

)
. The computer

shows a convergence to equilibrium
(

24
12
4

)
of the sequence (vn) with vn+1 = Avn.

We validate this by using EVal and EVec.

The characteristic polynomial pA(λ) = −λ3 +
1

2
λ+

1

2
= (λ− 1)

(
−λ2 − λ− 1

2

)

gives the EVal λ1 = 1 and λ2,3 = − 1
2 ±

√
− 1

4 or

λ1 = 1 ∈ R, λ2 = −1

2
+

1

2
i ∈ C and λ3 = −1

2
− 1

2
i ∈ C,
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and the absolut value of the EVal λ2/3 is

|λ2| =
∣∣∣∣−

1

2
+

1

2
i

∣∣∣∣ =

√
1

2
= |λ3| =

∣∣∣∣−
1

2
− 1

2
i

∣∣∣∣ < 1.

What does this mean for the iteration? If we write λ2 = reiϕ in polar coordinates
with r = |λ2| < 1, then rn → 0 for n→∞. The absolute value becomes smaller
and smaller and the sequence of complex numbers λ2, λ

2
2, λ

3
2, . . . spirals into the

origin. Analogue considerations work for λ3. Let’s also choose eigenvectors

v1 =




6
3
1


 , v2 =



−3i
− 3

2 + 3
2 i

1


 , v3 =




3i
− 3

2 −
3
2 i

1


 .

If we apply and use this, we see

1. The three EVal are pairwise different from each other and three EVec give
us an eigenbasis. That allows to write each initial vector w0 in the form
w0 = α1v1 + α2v2 + α3v3. Therefore wn = α1λ

n
1 v1 + α2λ

n
2 v2 + α3λ

n
3 v3.

2. We have λ1 = 1 and |λ2| < 1, |λ3| < 1. This means that λn1 = 1 is constant
for all n and for the other two sequences λn2 , λ

n
3 → 0.

3. If α1 = 0, then wn → 0.

If α1 6= 0, then wn → α1λ
n
1 v1 = α1v1, i.e. wn converges to the vector αv1.

The computer shows for example for the start vector w0 =
(

0
−3
2

)
= v2+v3,

that the sequence of vectors w1, w2, w3, . . . , wn, . . . converges to the zero
vector.

With initial w0 =
(

10
10
10

)
, the sequence w1, w2, w3, . . . , wn, . . . converges to

the vector
(

24
12
4

)
= 4

(
6
3
1

)
. In order to get the coefficient a priori, we must

use the equation w0 =
(

10
10
10

)
= α1v1 + α2v2 + α3v3, and determine the

coefficient α1, i.e. solving Cα = b with

C =




6 −3i 3i

3 − 3
2 + 3

2 i −
3
2 −

3
2 i

1 1 1


 , α =



α1

α2

α3


 and b =




10
10
10


 .

One findes α =
(
α1
α2
α3

)
=

(
4

3− 7
3 i

3+ 7
3 i

)
.

Summary Given an m×m-matrix A, that defines wn+1 = Awn.

Let us assume that there are m linearly independent EVec of A: v1, v2, . . . , vm,
with EVal λ1, λ2, . . . , λm. The λi are not necessarily different from each other.

Let w0 be a initial vector. Since the EVec vi are linearly independent, there
are numbers α1, α2, . . . , αm with w0 = α1v1 +α2v2 + . . .+αmvm. After n time
units: wn = α1λ

n
1 v1 + α2λ

n
2 v2 + . . .+ αmλ

n
mvm.

1. If |λi| < 1 holds for each EVal, then λni → 0 and therefore wn → 0.
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2. For example, let λ1 = 1, and for all other EVal λi let |λi| < 1 apply.

Then λn1 = 1 and λni → 0 and therefore wn → α1v1.

3. For example, let λ1 > 1 be a real EVal and |λi| < 1 for all other EVal λi.
Then follows λn1 →∞ and for the other EVal λni → 0.

4. More generally again: For example, let λ1 be an EVal with λ1 > |λi|, i =
2, 3, 4, . . . ,m. For each starting w0 = α1v1 + α2v2 + . . . + αmvm with
α1 6= 0 the vectors w1, w2, . . . , wn, . . . approach the direction of v1 more
and more. This means again: The sequence (wn/|wn|)n of the normalised
vectors converges towards the normalised EVec v1/|v1|.

Exercises

1. Verify the examples
Matrix Initial vector Series

1.

(
0 0 6
1
2 0 0

0 1
3 0

) (
12
12
12

)
Cycle with 3 TU

2.

(
0 0 6
1
2 0 0

0 1
3 0

) (
24
12
4

)
equilibrium

(
24
12
4

)

2. Let vn+1 =
( xn+1
yn+1

)
, vn = ( xn

yn ) and A =
(

1
5

2
5

− 3
5

13
10

)
.

(a) Compute (with a CAS or by hand) the vectors vn, for n = 1, 2, 3 . . .
with initial vectors v0 = ( 1

2 ) and v0 = ( 4
3 ). What can you say about

these vectors?

(b) Start now with v0 = ( 400
5000 ) and v0 = ( 5000

5000 ) and plot for n = 1, 2, 3 . . .
the values of xn and yn in the same coordinate system.

n

xn, yn

(c) Plot for both initial vectors in (b) the vector vn into a (xn, yn)-
coordinate system.

xn

yn

(d) Write ( 400
5000 ) and ( 5000

5000 ) (using a CAS) as a linear combination of ( 1
2 )

and ( 4
3 ) and explain your observations in (c).
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1st order ODE

We start with examples for (ordinary) differential equations.

Let t 7→ N(t) be a continuous model with the initial value N(0) = N0 and a
constant rate, i.e. for all t we have N ′(t)/N(t) = r. If we rewrite the equation,
we get N ‘(t)/N(t) = r =⇒ N ′(t) = r · N(t) or in short N ′ = rN. The
is a first example of an ordinary differential equation (ODE). The equation is
characterised by the following:

A solution is a function f with the property that the derivative f ′ is equal to the
initial function f multiplied by a constant factor r. We are therefore looking for
a function and not a number that fulfils this equation as the solution of an ODE.
In contrast to an equation of the form N ′(t) = 1000

1+t/2 the equation N ′ = r · N
also contains the function N : t 7→ N(t) on the right-hand side. So we cannot
simply look for a primitive for the right-hand side:

N(t) =

∫
N ′(t)dt =

∫
1000

1 + 1
2 t
dt = 2000 ln

(
1 +

1

2
t
)

+ C, C = constant.

For an ordinary differential equation (ODE) the solution is a function in a
variable. For a partial differential equation (PDE), the solution is a function in
several variables.

If we choose r = 1, we are looking for a function N with N ′ = N . We recall
(from Calculus) that this applies to the exponential function, i.e. (et)

′
= et.

Thus in detail, if N(t) = et we get N ′(t) = (et)
′

= et = N(t).

Is this the only possibility? For a constant c we consider N(t) = c · et. The
function also fulfils the ODE, because N ′(t) = (c · et)′ = c · (et)′ = c · et = N(t).

t

N(t)

N0

To find a unique solution, we use the initial value N(0) = N0, defining an initial
value problem (IVP) in which we have a ODE N ′ = N and in addition an initial
value N(t0) = N0.

For t0 = 0 we get N(t0) = N(0) = c · e0 = c, i.e. N(t) = N0 · et. In the same
way, for N ′ = r ·N the solution is N(t) = N0 · ert with the known graph above.

Exercise Find N(t) and sketch the graph in case of t0 > 0.

76



Uniqueness When modelling it is useful or perhaps imperative that we work
with an unique solution, or at least be able to decide whether this is the case.
Statements about the existence and uniqueness of a solution require more theory.

As an elementary example, let us look at exponential ODE and ask ourselves
why the exponential function provides the only solution to the equationN ′ = N?

Let f be another function that fulfils the equation f ′ = f . Let g be an auxiliary
function with g(t) = f(t) · e−t. This function measures, how the values f(t)
differs from et. Now we compute

g′(t) =
(
f(t) · e−t

)′
= f ′(t) · e−t + f(t) · (−e−t) product and chain rule

= f ′(t) · e−t − f ′(t) · e−t f ′ = f

= 0.

If the derivative vanishes everywhere the function g, i.e. g(t) = C must be
constant. Due to the definition of the auxiliary function g(t) = f(t) · e−t = C
we conclude that indeed f(t) = C · et. Therefore that f is again an exponential
function. With the initial f(0) = N0 moreover f(t) = N0 · et.
The same applies for N ′ = rN with initial value N(t0) = N0. Here too, the
exponential function provides the unique solution f(t) = N0 · ert.

Bounded growth Exponential growth is an idealisation. In application there
is a limitation and therefore we must introduce a correction. We obtain an ODE
of the formN ′(t) = r(K−N(t)), 0 < N(0) = N0 < K and r > 0. This is another
example of a linear ODE. A solution of this equation is again a function f with
the property : On the left-hand side of the equation is the derivative f ′, and
if we insert f on the right-hand side, we get r(K − f), i.e. for each t from the
common definition sets of Df and Df ′ one has f ′(t) = r(K−f(t)). We are again
looking for a function and not a number that fulfils this differential equation.

Why does this equation describe a development with limited growth? We take
a qualitatively look at the solution behaviour without knowing the solution
explicitly. We assume here and in the following that a solution exists and is
unique.

1. As 0 < N(0) < K it implies K − N(0) > 0. With r > 0 we see a
positive slope at the initial value N ′(0) = r(K − N(0)) > 0 and further
N ′(t) = r(K−N(t)) > 0, as long as N(t) < K. The function N is strictly
monotonically increasing as long as N(t) < K.

2. Assume that N(t) is much smaller than K at the beginning, i.e. for small t
it holds K−N(t) ≈ K. The ODE tells us that N ′(t) = r(K−N(t)) ≈ rK,
i.e. constant growth and can solve the equation N ′ ≈ rK to see a linear

model with N(t) ≈
∫
rKdt = (rK) · t+ C.

3. With N(t) → K follows K − N(t) → 0, and we get slower and slower
growth, since the right-hand side of the ODE N ′(t) = r(K−N(t)) becomes
smaller and smaller, the velocity N ′ becomes smaller and smaller. For the
value N∞ = K the ODE is N ′∞ = r(K − K) = 0, and there is no more
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growth. Thus K is an upper bound (maximum capacity). The values of
N grow over time and approache the asymptote N∞ = K more and more.

4. How does the growth rate N ′ change? Where are any inflection points? To

do this, we calculate N ′′(t) = (N ′)′(t)
ODE
= (r(K −N(t)))′ = −rN ′(t) 6= 0

as r > 0 and N ′(t) > 0, there are no inflection points.

The solution is N(t) = (N0 −K) · e−rt +K with the graph.

t

N(t)

N0

We check whether this function is indeed a solution:

N(0) = (N0 −K) · e−r0 +K = (N0 −K) · 1 +K = N0 −K +K = N0

and

N ‘(t) =
(
(N0 −K) · e−rt +K

)′
= (N0 −K) ·

(
e−rt

)′
Derivative

= (N0 −K) · (−r)e−rt Chain rule

= (N0 −K) · (−r)e−rt − rK + rK Expand with zero

= r
(
−((N0 −K) · e−rt +K)

)
+ rK Arithmetics

= r
(
−N(t)

)
+ rK = r

(
K −N(t)

)
Definition N(t).

Linear ODE with constant coefficients Exponential and bounded growth
are examples of linear ODEs with constant coefficients. In general we say

Definition. An nonhomogeneous linear ODE with constant coefficients is an
equation of the form y′ = ay + b with constants a and b.

If b = 0, the ODE is homogeneous.

Our first examples are of this kind, i.e. for N ′ = rN we have N = y, a = r
and b = 0. And for the bounded growth N ′ = r(K − N), we compute N ′ =
rK − rN = −rN + rk, i.e. a = −r and b = rK.

Solutions of a linear ODE with constant coefficients We now specify
different cases in which functions solve a such an ODE.

Primitive

If a = 0 we have y′ = b, which is solved directly: y =

∫
b dt = b · t+ C.

Stationary Solution

A stationary solution of y′ = ay+b is a constant solution y∞ with y′∞ = 0.

This for a 6= 0 we see 0 = ay∞ + b =⇒ y∞ = − b
a
.
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Homogeneous Solution

If b = 0, the ODE is homogeneous, we are in the exponential case with
the general solution yH(x) = C · eax.

General solution

A stationary solution combined with the homogeneous solution provides

the general solution of y′ = ay + b by y(x) = yH + y∞ = C · eax − b

a
. Let

us check this

y′(x) =
(
C · eax − b

a

)′
= Ca · eax Chain rule

= a
(
C · eax

)
= a

(
C · eax − b

a
+
b

a

)
Extension by zero

= a
(
y(x) +

b

a

)
= ay(x) + b Insert y(x) = C · eax − b

a

Initial Value Problem

If we specify an initial value y(0) = y0, we obtain for the constant C above

y(0) = y0 = C · e0 − b

a
= C − b

a
=⇒ C = y0 +

b

a

and after inserting y(x) =
(
y0 +

b

a

)
· eax − b

a
= y0 · eax +

b

a
(eax − 1) . If

we apply this formula to the limited growth, we get a = −r and b = rK.

This values results ± b
a

= ∓K. Using this and y0 = N0 in the above

formula show that we get indeed N(t) = (N0 −K) · e−rt +K.

Convergence

The general solution y(x) = C ·eax− b
a

also makes a direct statement about

the convergence behaviour. For a < 0 there is convergence C · eax → 0 for
x→∞ and thus y(x)→ − b

a = y∞. Because a < 0, y∞ is then positive if
b is also positive. In the case a > 0 we have no convergence for x→∞.

In the above example of limited growth we have − b
a = K as an asymptote.

Exercises

1. Let f with f(0) = 1 be the solution of y′ = ay + 2023.
Which a gives lim

x→+∞
f(x) = 119?

2. Solve and plot the solution for y′(x)± 2y(x) = 1.

Overview for ODE in general An ordinary differential equation (ODE) is
an equation of the form y(n) = F

(
x, y, y′, ..., y(n−1)

)
. It consists of

• an unknown function in one variable, which we can denoted by y = y(x)
or f = f(x) or also x = x(t) ...
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• derivatives y‘, y′′, ..., y(5), ... y(n), ... or f ′ or also ẋ, ẍ ...

• and the variable x or t ...

The order of an ODE y(n) = F (x, y, y′, ..., y(n−1)), denotes the highest occurring
derivative. We are particularly interested in the 1st order, as these are important
for growing processes. These can be linear like y′(x) = −ay(x) or non-linear
like the logistic ODE of the form y′(x) = ay(x)(B − y(x)).

Differential equations of the 2nd order mainly occur in oscillation processes and
have the form for example, have the form my′′(x) = −ky(x) − ry′(x). This is
the equation of motion of a harmonic oscillation with friction.

Solutions of an ODE We are looking for a function f : D → R, x 7→ f(x)
defined on an interval D that has the property: If, for each x ∈ D on the
left-hand side of the equation y(n) = F (x, y, y′, ..., y(n−1)) the corresponding
derivative f (n)(x), this must be equal to of the right-hand side if we insert
the corresponding derivatives there. The equation must be fulfilled for every
x ∈ D, not just for individual x. A solution can be given in different ways. We
distinguish

General solution and Initial Value problem The general solution of an
ODE depends on constants. If the order is n, these are n constants,
i.e. in case of a 1st-order the general solution contains one constant C1,
and for 2nd order there are two constants C1, C2. These constants can be
determined by the initial values f(x0), f ′(x0), ..., f (n−1)(x0), ....

Note that if the order is n, we need n initial values, even if not all deriva-
tives y(n) occur in the ODE y(n) = F (x, y, y′, ..., y(n−1)). So for 2nd order,
both constants C1 and C2 must be defined, even if no 1st derivative ap-
pears, e.g. my′′(x) = −ky(x), the equation for the harmonic oscillation
without friction, in which the 1st derivative is missing.

Stationary solutions The solutions y∞ of the ODE that are independent of
the variable x are called stationary solutions or equilibrium solutions or
also fixed point. If the right-hand side of y(n) = F (y, y′, ..., y(n−1)), i.e.
independent of the variable x, then y∞ is constant.

Stationary solutions of a 1st order ODE y′ = F (y) Here it is important
that the right-hand side F (y) only depends on y. The following applies: y∞
is a stationary solution ⇐⇒ y∞ is constant ⇐⇒ y′∞ = F (y∞) is constant
zero. Equilibrium solutions are therefore just the zeros of F and in a stationary
solution, the population is in equilibrium, i.e. t y′∞ = 0, so there is no change.

Due to the uniqueness of the solution of the IVP, two solutions do not intersect.
Therefore, stationary solutions are candidates for asymptotes. For a stationary
solution the system is in an equilibrium y′∞ = 0,

Exercise Let y′(x) = (y(x) − 1)(y(x) + 1)(y(x) − 2). For which y(0) = y0 is
the solution constant? For which strictly monotonous increasing/decreasing?
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We investigate the question of how solutions behave in the vicinity of an equi-
librium solution: Do they converge towards y∞, or are they repelled by y∞?
Can we specify a criterion for convergence near y∞?

Statements about the existence and uniqueness of a solution require more theory.
We assume here that we have a unique AWP solution in each case. Then we
know that two solutions with AWP y0 6= y1 do not intersect, and there is at
most there is an asymptotic approximation.

Often only a numerical solution or a qualitative description of the solution is
possible. Depending on the form, it is possible to specify a formula in elemen-
tary functions. The main methods are then the separation of the variables or
integrating factors.

Linear ODE in general Let p, q : R→ R be two functions. An ODE of the
form y′(x) = p(x)y(x) + q(x) is called linear ODE (of 1st order). If q = 0 it is
called homogenous.

Exercise Which ODE are linear?

1. y′(x) = x− y(x) + 1

2. y′(x) =
y(x)

x
+ sin(x)

3. y′(x) =
x

y(x)

4. y′(x) =
y(x)

x
+ y(x)

5. y′(x) =
y(x)

x
+ sin(y(x))

Solution with particular solution Let yH be the general solution of the
homogenous ODE y′(x) = p(x)y(x)  yH = K · eP (x). Let ysp be a particular
solution of y′(x) = p(x)y(x) + q(x). Then y = yH + ysp general solution of
nonhomogenous ODE y′(x) = p(x)y(x) + q(x). Exercise Check!

Note that is a generalisation of the above constant case y′ = ay+b with solution

given by y(x) = C · eax︸ ︷︷ ︸
yH

+

(
− b
a

)

︸ ︷︷ ︸
ysp=y∞

.

To get solution ysp one could apply different Ansätze (e.g. slope field below).
Mostly Integrating factors is more target-oriented.

Integrating Factors Let y′(x) = p(x)y(x) + q(x).

Method of Integrating Factors delivers general solution:

y(x) = (K0(x) + C)eP (x) = K0(x)eP (x) + CeP (x)

where K0(x) ∈
∫
q(x)e−P (x) and P ′ = p.

Note that in the sum K0(x)eP (x) + CeP (x) we have K0(x)eP (x) as a particular
solution ysp of nonhomogenous y′(x) = p(x)y(x)+q(x), i.e. we choose C = 0.
And CeP (x) is the general solution yH of the homogeneous part. Thus the
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general solution of nonhomogenous y′(x) = p(x)y(x) + q(x) can always be
split into y = yH + ysp.

Exercises Solve and plot the solution.

1. y′(x) = y(x) + x.

2. y′(x) = y(x) + sin(x) with y(0) = 1.

3. y′(x)− y(x) = xe−x.

Slope Field Given y′(x) = F (x, y) and a solution f with f(x) = y.

For (x, f(x)) = (x, y) on the graph the slope of the tangent at the point (x, y) is
given by f ′(x), and with the differential equation this is f ′(x) = F (x, y). Thus if
we look at are at the point (x, y) and this lies on a solution f of y′(x) = F (x, y),
we obtain the value of f ′(x) by inserting the coordinates x and y on the right-
hand side F (x, y). In the following two figures, the computer has calculated the
gradient and drawn a small tangent line.

−2 0 2

−2

0

2

y

x
−2 0 2

−2

0

2

y

x

y‘ = x− y + 1 y′ = x

The slope field gives us a qualitative idea of what a solution curve looks like.

On the right, we recognise the parabolic contour and thus directly the solution

by y(x) =

∫
x dx. On the left we see the bisector y = x. In fact, this fulfils the

function y(x) = x fulfils the differential equation, since y′(x) = 1 = x− x+ 1.

Exercise

1. Determine the missing a and b.

0 1 2 3

x

0

0.5

1

1.5

2

2.5

3

3.5

4

y

a

x

y

y′(x) = −2y(x) + b. What is b? y′(x) = −4y(x) + 8. What is a?
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2. Match each of the ODEs

y′(x) = y(x), y′(x) = 2x+ y(x), y′(x) = x2, y′(x) = 2x+ 1

to a slope field.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

3. Which slope field belongs to the ODE y′(x) = y2(x)− 1

4
?

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

0.2 0.4 0.6 0.8 1.0

-0.5

0.5
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2nd order ODE

Using an example (with double EVal) we explain that solving a 2 × 2-ODE-
system leads to solving a 2nd order differential equation. Let y′(x) = A · y(x)

be given with y′(x) =
(
y′1(x)
y′2(x)

)
, y(x) =

(
y1(x)
y2(x)

)
, A =

(
5 1
−4 1

)
. Then A has

the double EVal α = 3 and the EVecs are of the form
(
− 1

2
1

)
· t, t ∈ R, t 6= 0

(Exercise!). Therefore there is no eigenbasis. To find the general solution, we
determine the solution y1 as solution of a 2nd order ODE:

1. The 1st coordinate is y′1 = 5y1 + y2, the 2nd is y′2 = −4y1 + y2.

2. We calculate in the 1st coordinate

y′1 = 5y1 + y2 =⇒ y2
∗
= y′1 − 5y1 =⇒ y′2

∗∗
= y′′1 − 5y′1.

3. Insert ∗ in the 2nd equation of the system: y′2 = −4y1+y′1 − 5y1︸ ︷︷ ︸
=y2

= y′1−9y1.

4. With ∗∗ and y′2 = y′1 − 9y1 in 3., we obtain a 2nd order ODE for y1

y′′1 − 5y′1 = y′1 − 9y1 =⇒ y′′1 − 6y′1 + 9y1 = 0

How can we now find the general solution y1 of this ODE? If we succeed in this,
then also find y2 with the equation ∗.

Definition. Let a, b ∈ R and g : x 7→ g(x) be a function. An ODE of the form

y′′(x) + ay′(x) + by(x) = g(x)

is called a 2nd order linear ODE with constant coefficients. If g = 0, it is called
homogeneous.

Note that again no products y2, (y′)2, y′ · y′′, ... appear.

If possible try to reorder to get the form y′′(x) + ay′(x) + by(x) = g(x). The
example ODE 5y′′(x) − y′(x) = y(x) + cos(x) is indeed the nonhomogeneous
ODE y′′(x)− 1

5y
′(x)− 1

5y(x) = 1
5 cos(x).
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Example harmonic oscillator 2nd order ODE play an important role in
the application, especially with oscillations. Let’s look at the example of the
harmonic oscillator. A mass m moves on a rail and is connected to a spring on
the left and right: m

x0

Let x(t) be the position of the mass at time t with x(0) = R.

Without friction According to Newton’s 2nd law (force = mass times acceler-
ation) and Hooke’s law of springs (repulsive spring force = spring constant

k times deflection) applies mx′′(t) = −kx(t) =⇒ x′′(t) +
k

m
x(t) = 0.

The equation is often specified with the natural frequency ω

x′′(t) + ω2x(t) = 0 with ω =

√
k

m
.

With friction If we obtain a damped motion with

mx′′(t) = −kx(t) −r︸︷︷︸
friction

x′(t) =⇒ x′′(t) +
r

m
x′(t) +

k

m
x(t) = 0.

Solution in the homogeneous case With the approach y(x) = eλx we
obtain the characteristic equation equation λ2 + aλ + b = 0 of a homogeneous
differential equation y′′(x) + ay′(x) + by(x) = 0. This quadratic equation has

the solutions λ1/2 = −a
2
± 1

2

√
a2 − 4b.

How do the three cases a2 − 4b > 0, < 0 or = 0.

1. a2 − 4b > 0, λ1 6= λ2, two real solutions:

General solution y(x) = C1e
λ1x + C2e

λ2x.

2. a2 − 4b = 0, λ1 = λ2 = α, a real solution:

General solution y(x) = C1e
αx + C2x↑

eαx = (C1 + C2x)eαx.

3. a2 − 4b < 0, conjugates complex solutions λ1/2 = α± iβ:

General solution y(x) = eαx(C1 cos(βx) + C2 sin(βx)).

Exercises

1. Compare this with the three cases for determining the general solution of
a linear 2× 2-system y′ = Ay.

2. Solve and plot the solution

(a) For the Harmonic Oszillator (both cases)

(b) y′′ − y′ − 2y = 0.

(c) y′′ − 2
√

3y′ + 2y = 0

(d) y′′(x) + 4y′(x) + 4y(x) = 0 where y(0) = 2, y′(0) = 4

(e) x′′ + 2x′ + x = 0 where x(0) = x′(0) = 1.
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Application to Harmonic oscillator In the case without friction we are

using the above recipe for the ODE x′′(t) +
k

m
x(t) = 0. With ω2 =

k

m
the

characteristic equation is λ2 +ω2 = 0 with solutions λ1,2 = ±ω i. We are in the
third case above and the solution is x(t) = C1 cos(ωt) + C2 sin(ωt).

Exercise Determine the constants with initial values x(0) = d, x′(0) = 0.

Types of damping For the Harmonic oscillator with friction we investigate

the ODE x′′(t)+
r

m
x′(t)+

k

m
x(t) = 0. Again set ω2 =

k

m
and also 2µ =

r

m
. The

characteristic equation is λ2+2µ+ω2 = 0 with solutions λ1,2 = −µ±
√
µ2 − ω2.

We distinguish strong damping in case µ > ω =⇒ λ1 6= λ2 < 0 real solutions;
critical damping if µ = ω =⇒ α = λ1 = λ2 < 0 a real solution and low
damping in case of µ < ω =⇒ λ1,2 = −µ± iβ complex solutions.

Solution in the nonhomogeneous case Let y′′(x) + ay′(x) + by(x) = g(x)
be nonhomogeneous. As in the 1st order case we have the following: Let yH
be the general solution of the homogeneous ODE y′′ + ay′ + by = 0 and
let ysp be a special solution of y′′ + ay′ + by = g. Then y = yH + ysp is the

general solution of the nonhomogeneous ODE y′′+ay′+ by = g. Finding
such a special solution ysp requires an investigation or guessing or an approach
that depends on g.

Solving a 2×2-ODE system as a 2nd order ODE To find the solution of

the system y′ = Ay with A =
(

5 1
−4 1

)
we derived the ODE y′′1 − 6y′1 + 9y1 = 0

with characteristic equation λ2−6λ+9 = 0 = (λ−3)2. Note that this is also the
characteristic polynomial pA(λ) of the matrix A. Thus, the general solution for

the 1st coordinate is y1(x) = (C1 + C2x)e3x according to above section. With

the equations in the ODE system we got y2
∗
= y′1 − 5y1. Plugging in y1 and y′1

it follows:

y2
∗
= y′1 − 5y1 =

(
(C1 + C2x)e3x

)′ − 5
(
(C1 + C2x)e3x

)
= −2C1e

3x + C2(1− 2x)e3x

Exercise Check the last step by differentiating and sorting)

Collecting the two solution we get the general solution of the system:

y(x) =

(
y1(x)
y2(x)

)
=

(
C1e

3x + C2x e
3x

−2C1e
3x + C2(1− 2x)e3x

)
=

(
C1e

3x

−2C1e
3x

)
+

(
C2x e

3x

C2(1− 2x)e3x

)

= C1e
3x

(
1
−2

)
+ C2 e

3x

(
x

1− 2x

)

The general case Let us verify that we can also generally apply the solution
of a system y′ = Ay with A =

(
a b
c d

)
can lead back to the solution of a 2nd order

ODE.
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Let b 6= 0 6= c. Otherwise the two differential equations are decoupled.

1. Multiplying the first coordinate of the system y′1 = ay1 + by2 by d gives

dy′1 = ady1 + bdy2 =⇒ dy′1 − ady1 = bdy2.

By differentiating we obtain y′′1 = ay′1 + by′2 =⇒ y′′1 − ay′1 = by′2.

2. The second coordinate y′2
∗
= cy1 + dy2 multiplied by b and 1. eliminate y2

y′′1 − ay′1 = by′2
∗
= bcy1 + bdy2 = bcy1 + dy′1 − ady1.

3. We sort y′′1 − (a+ d)y′1 + (ad− bc)y1 = 0. Alternative notation with
the trace tr(A) = a + d, the sum of the diagonal entries:

y′′1 − tr(A)y′1 + det(A)y1 = 0

The characteristic equation of this ODE is λ2−tr(A)λ+det(A) = 0 and is equal
to the characteristic polynomial of the matrix A in which the trace tr(A) is the
sum of the EVal and det(A) is the product.

On the other hand, if we have an ODE y′′(x)+ay′(x)+ by(x) = 0, how does the
associated system look like y′ = Ay with A =

(
a b
c d

)
, whose solution corresponds

to the solution of the 2nd order ODE? We get

{
y′1(x) = y2(x)
y′2(x) = −by1(x)−ay2(x)

}

with A =
(

0 1
−b −a

)
and this corresponds to y′′1 (x) + ay′1(x) + by1(x) = 0.

Example Harmonic oscillator with x′′(t) +ω2x(t) = 0 and ω =

√
k

m
leads to

the matrix A =
(

0 1
−ω2 0

)
.

Exercises Translate the 2nd order ODEs in the above exercise into a 2 × 2-
system:

1. y′′ − y′ − 2y = 0

2. y′′ − 2
√

3y′ + 2y = 0

3. y′′(x) + 4y′(x) + 4y(x) = 0 where y(0) = 2, y′(0) = 4

4. x′′ + 2x′ + x = 0 where x(0) = x′(0) = 1.

Plot the solutions of the system as curves in the plane and apply the classification
using EVal.

Comparison of the methods If we are faced with a matrix A that does not
allow an eigenbasis we can apply the matrix exponential to solve a homogeneous
n × n system y′ = Ay. In the case n = 2 for a 2 × 2 matrix, there is also a
variant via a 2nd order ODE. Why do these two provide the same solution?

We will show this with the example A =
(

5 1
−4 1

)
with double EW α = 3.
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The associated EVecs are of the form t
(

1
−2
)

with t ∈ R, t 6= 0. There is no
eigenbasis, so we cannot directly find a basis of the solution space LA.

The computer calculates exA =

(
e3x(1 + 2x) e3xx
−4e3xx e3x(1− 2x)

)
= (b1(x) b2(x)).

The general solution is therefore

y(x) = C1b1(x) + C2b2(x) = C1e
3x

(
1 + 2x
−4x

)
+ C2 e

3x

(
x

1− 2x

)

= C1e
3x

(
x

(
2
−4

)
+

(
1
0

))
+ C2 e

3x

(
x

1− 2x

)
.

Without the matrix exponential, we can also determine the general solution

using a 2nd order ODE. In this case it is y′′1 − 6y′1 + 9y1 = 0 with solution

y(x) = C1e
3x

(
1
−2

)
+ C2 e

3x

(
x

1− 2x

)
.

These two representations of the general solution y(x) look different at first. If
we choose an initial vector, for example y(0) = y0 = ( 1

1 ), this results in the
same solution function in each case. We calculate:

y(x) = exAy0 =

(
e3x(1 + 2x) e3xx
−4e3xx e3x(1− 2x)

)(
1
1

)
=

(
e3x + 3e3xx
e3x − 3e3xx

)
.

In the other case, we determine the two constants we are looking for C1 and C2

by inserting x = 0 into y(x) = C1e
3x
(

1
−2
)

+ C2 e
3x ( x

1−2x ) .

The system of linear equations y(0) = C1

(
1
−2
)
+C2 ( 0

1 ) = ( 1
1 ) then gives C1 = 1

and C2 = 3. With these, the result is again y(x) =

(
e3x + 3e3xx
e3x − 3e3xx

)
.
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