

Mathematical Tools I

2025

Dr. Alexander Caspar Dr. Selasi Kwaku Ocloo

Self Assessment

Please note that this self assessment is NOT graded!

We recommend that you solve it under open-book exam conditions and limit your time to 60 - 70 minutes. Note for some exercises more than one answer is correct! Please submit your solutions by the 8th of January at noon.

1. Consider the matrix $E = \begin{pmatrix} 0 & -1 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ for a constant $b \in \mathbb{R}$. Let $F = \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ be a second matrix. Then the product EF is given by ...

(a) $\begin{pmatrix} -b & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(b)
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (c) $\begin{pmatrix} -2 & 0 & 0 \\ 0 & -b & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- (d) $\begin{pmatrix} b & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

2. Consider again the matrices
$$E = \begin{pmatrix} 0 & -1 & 0 \\ b & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $F = \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. If $b > 0$ then ...

- (a) the eigenvalues of the product EF are negative numbers.
- (b) the sum of the eigenvalues of the product EF is a negative number.
- (c) the product of the eigenvalues of the product EF is a negative number.
- (d) None of the above.

3. The matrix $A = \begin{pmatrix} 5 & 1 \\ -4 & 1 \end{pmatrix}$ has eigenvalues $\alpha_1 = 3$ and $\alpha_2 = \dots$

- (a) $\alpha_2 = 1.$
- (b) $\alpha_2 = 2.$
- (c) $\alpha_2 = 3.$
- (d) $\alpha_2 = 4.$

4. Which of the following vectors is an eigenvector of
$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}?$$

(a)
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

(b) $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$

(c)
$$\begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix}$$

(d) None of the above.

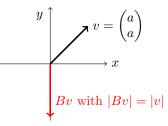
5. Let
$$A = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} x_1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & x_2 \end{pmatrix}$. Which x_1, x_2 yield $B = A^{-1}$?
(a) $x_1 = 1$ and $x_2 = -1$
(b) $x_1 = -1$ and $x_2 = 1$
(c) $x_1 = x_2 = 1$
(d) $x_1 = x_2 = -1$
6. The inverse of $A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \dots$
(a) exists only if $\varphi = 0, \pi$.
(b) is given by $A^{-1} = \frac{1}{\cos^2 \varphi - \sin^2 \varphi} \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$.
(c) is given by $A^{-1} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$.

(d) is given by
$$A^{-1} = \begin{pmatrix} \sin \varphi & -\cos \varphi \\ \cos \varphi & \sin \varphi \end{pmatrix}$$
.

7. Let $A = \begin{pmatrix} 0 & -4 & -3 \\ 2 & 2 & 2 \\ 1 & 4 & 4 \end{pmatrix}$. The vector $v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ is an eigenvector of the **inverse** matrix A^{-1} with eigenvalue λ . Find the value of λ .

- (a) $\lambda = \frac{1}{2}$
- (b) $\lambda = 2$
- (c) $\lambda = \frac{1}{3}$
- (d) $\lambda = 3$
- 8. Which x yields det $\begin{pmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} = 1?$
- (a) x = 0
- (b) x = 1
- (c) x = 2
- (d) x = 4

9. Let $B = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ and $v = \begin{pmatrix} a \\ a \end{pmatrix}$ with a > 0. Which φ with $0 \le \varphi < 2\pi$ matches the following figure?



- (a) $\varphi = \frac{\pi}{4}$
- (b) $\varphi = \frac{3\pi}{4}$
- (c) $\varphi = \frac{5\pi}{4}$
- (d) $\varphi = \frac{7\pi}{4}$

10. Which of the following sets is a subspace of the vector space of (2×2) - matrices $M_{2 \times 2}$ with the usual addition and scalar multiplication?

(a) The set of all invertible (2×2) - matrices.

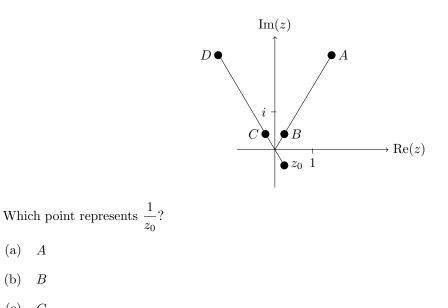
(b)
$$U = \left\{ \begin{pmatrix} a & 0 \\ a^2 & a \end{pmatrix}; a \in \mathbb{R} \right\}$$

(c)
$$U = \left\{ A \in M_{2 \times 2} : A^\top = -A \right\}$$

(d) None of the above.

11. The imaginary part of $z = \frac{8}{i+1}$ is given by ...

- (a) $\Im(z) = -8.$
- (b) $\Im(z) = -4.$
- (c) $\Im(z) = 4.$
- (d) $\Im(z) = 8.$
- 12. Let z_0 and A, B, C, D be points representing complex numbers as indicated below



(c) C

(a) A

(b) *B*

(d) D

13. Let $\begin{pmatrix} 2 & 0 & 4 \\ 0 & 1 & 0 \\ -1 & 0 & b \end{pmatrix} \cdot x = 0$. For which *b* does this equation have a solution $x \neq 0$?

- (a) b = -2
- (b) b = -1
- (c) b = 0
- (d) b = 1

14. The above matrix is involved in the following equation $\begin{pmatrix} 2 & 0 & 4 \\ 0 & 1 & 0 \\ -1 & 0 & b \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ z \end{pmatrix}$. There exist b

and z such that	$\begin{pmatrix} 0\\1\\\frac{1}{4} \end{pmatrix} \text{ and } \begin{pmatrix} \frac{1}{2}\\1\\0 \end{pmatrix}$	are both solutions. Find the value of z .
(a) $z = -2$		
(b) $z = -\frac{1}{2}$		
(c) $z = \frac{1}{2}$		

- (d) z = 1
- 15. Consider the following matrix in row reduced echelon form:

$\begin{bmatrix} 2 \end{bmatrix}$	-1	3	4
0	$\alpha + 1$	0	$\beta^2 - 1$
0	0	$\alpha - 2$	$\begin{bmatrix} \beta^2 - 1 \\ \beta + 1 \end{bmatrix}$

For which choice of α and β does this system have a unique solution?

- (a) $\alpha = 2$ and any β
- (b) $\alpha = 2$ and $\beta = -1$
- (c) $\alpha \neq 2$ and any β
- (d) None of the above.

16. Which of the following ODEs are linear?

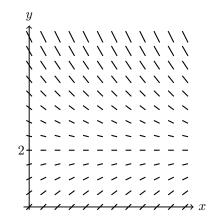
(a)
$$(y'-2)^2 = y$$

(b)
$$\frac{y'}{1-x^2} + \frac{y}{1+x} = \frac{1}{x^2}$$

(c)
$$y' = \frac{2xy}{x^2 - y^2}$$

(d) None of the above.

17. Consider the following slope field.



Which of the following ODEs fits?

- (a) $y'(x) = \frac{1}{2} \cdot y(x) + 1$
- (b) y'(x) = 2y(x) + 1
- (c) $y'(x) = -\frac{1}{2} \cdot y(x) + 1$
- (d) None of the above.

18. Which general solution matches the above slope field?

- (a) $y(x) = C \cdot e^{\frac{1}{2}x} + 1$
- (b) $y(x) = C \cdot e^{-\frac{1}{2}x} 2$
- (c) $y(x) = C \cdot e^{\frac{1}{2}x} + 2$
- (d) $y(x) = C \cdot e^{-\frac{1}{2}x} + 2$

19. Which of the y(x) defines the general solution of $y'' - \omega^2 y = 0$ (with $\omega \neq 0$ constant)?

(a) $y(x) = C_1 e^{\omega x} + C_2 \cdot x \cdot e^{-\omega x}$

(b)
$$y(x) = C_1 e^{\omega x} + C_2 e^{-\omega x}$$

- (c) $y(x) = C_1 e^{\omega^2 x} + C_2 e^{-\omega^2 x}$
- (d) None of the above.

20. What is the extension of MATLAB script files?

- (a) .mat
- (b) .m
- $(c) \quad .\texttt{script}$
- (d) There are no script files in MATLAB.

- 21. The if else if statement is used for:
- (a) one statement
- (b) two variables
- (c) multiple statements
- (d) none of the above.

22. The MATLAB expression rand generates a real number in the open interval (0, 1). Which of the following would generate a random number in the open interval (3, 5)?

- (a) rand*2+3
- (b) rand*3+5
- (c) rand*[3,5]
- **23.** Which statement returns the roots for the polynomial $x^2 x + 3$?
- (a) poly([1 -1 3])
- (b) solve(x^2-x+3==0)
- (c) $polyfit(x^2-x+3==0)$
- (d) roots([1 -1 3])