Prof. Dr. Özlem Imamoglu

Nur die Aufgaben mit einem * werden korrigiert.

- 7.1. MC Fragen: Wählen Sie die einzige richtige Antwort.
 - (a) Sei $f: D \to \mathbb{R}$ mit $D \subseteq \mathbb{R}$. Welche der folgenden Aussagen ist äquivalent zur Stetigkeit von f?

 \square Für alle $x \in D$ und $\varepsilon > 0$ existiert ein $\delta > 0$ so dass für alle $z \in D$ gilt:

$$z \in (x - \delta, x + \delta) \implies f(z) \in (f(x) - \varepsilon, f(x) + \varepsilon).$$

 \square Für alle $x \in D$ existiert ein $\delta > 0$ so dass für alle $\varepsilon > 0$ und $z \in D$ gilt:

$$|z - x| < \delta \implies |f(z) - f(x)| < \varepsilon.$$

 \square Für alle $\varepsilon > 0$ existiert $\delta > 0$ so dass für alle $x, z \in D$ gilt:

$$|x - z| < \delta \implies |f(x) - f(z)| < \varepsilon.$$

- \square Alle obigen Definition sind falsch.
- (b) Seien $f, g: D \to \mathbb{R}$ monoton wachsende Funktionen, $D \subseteq \mathbb{R}$.
 - \square $f \cdot g : D \to \mathbb{R}$ ist monoton wachsend.
 - \square Angenommen $g(x) \neq 0$ für alle $x \in D$. Dann ist $\frac{f}{g}$ monoton wachsend.
 - \square Angenommen, $f(x),g(x)\neq 0$ für alle $x\in D.$ Dann ist $\frac{f}{g}$ oder $\frac{g}{f}$ monoton wachsend.
 - \square Alle origin Aussagen sind falsch.
- (c) Kreuze die richtigen Aussagen an.
 - $\square f: [0,1] \to \mathbb{R}$ beschränkt $\Longrightarrow f$ monoton.
 - \square $f:[0,1] \to \mathbb{R}$ strikt monoton wachsend $\implies f$ stetig.
 - $\Box f:(0,1]\to\mathbb{R}$ monoton $\Longrightarrow f$ beschränkt.
 - $\square \ f:[0,1] \to \mathbb{R}$ monoton $\implies f$ beschränkt.
- (d) Welche der folgenden Bedingungen impliziert **nicht**, dass $f: \mathbb{R} \to \mathbb{R}$ stetig ist?
 - \square Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|$ für alle $x, y \in \mathbb{R}$.

- \square Es gibt $C \geq 0$, so dass $|f(x) f(y)| \leq C|x-y|$ für alle $x,y \in \mathbb{R}$ mit $|x-y| \geq 1.$
- \square Es gibt $C \ge 0$, so dass $|f(x) f(y)| \le C|x y|^2$ für alle $x, y \in \mathbb{R}$ mit $|x y| \le 1$.
- *7.2. Stetigkeit I Finden Sie die Werten $a, b \in \mathbb{R}$, sodass die Funktion $f : \mathbb{R} \to \mathbb{R}$ die durch

$$f(x) = \begin{cases} x^2 - ax + b, & \text{wenn } x \le -1, \\ (a+b)x, & \text{wenn } -1 < x < 1, \\ x^2 + ax - b, & \text{wenn } x \ge 1 \end{cases}$$

definitert ist, stetig in \mathbb{R} ist. Zeichnen Sie den Graphen der Funktion.

- **7.3. Zwischenwertsatz** Sei $f:[0,1] \to [0,1]$ eine stetige Funktion. Beweisen Sie, dass es $x \in [0,1]$ gibt, sodass f(x) = x.
- *7.4. Stetigkeit II. Zeigen Sie, dass die Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \qquad f(x) = \begin{cases} x, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

nur in x = 0 stetig ist.

7.5. Surjektivität von x^n . Zeigen Sie, dass die Funktion

$$f: [0, \infty) \to [0, \infty), \qquad x \mapsto x^n$$

surjektiv ist.

Hinweis: Wir können nicht davon ausgehen, dass die Umkehrfunktion der Funktion $f(x) = x^n$ (d. h. die n-te Wurzelfunktion) existiert, ohne zu zeigen, dass die Funktion f surjektiv ist.