Nur die Aufgaben mit einem * werden korrigiert.

11.1. MC Fragen.

1	ر م	Wolobo dor	folgon don	Immlilentionalentton	fiin airea	Dunletion	f $a:=1$	miobtim?
(a)	weiche der	: ioigenden	Implikationsketten	rur eme	runkuon ,	j sma	riching:

 \Box f ist differenzierbar \Longrightarrow f ist stetig.

 \square f ist stetig \Longrightarrow f ist differenzierbar.

 $\Box f'' > 0 \Longrightarrow f$ ist konvex.

 $\Box f'' > 0 \Longrightarrow f \text{ ist konkav.}$

(b) Wählen Sie die richtige Aussagen.

 \square Falls f_n stetige Funktionen sind und falls f_n nach f gleichmässig konvergiert, dann ist f auch stetig.

 \square Falls f_n differenzierbare Funktionen sind und falls f_n nach f gleichmässig konvergiert, dann ist f auch differenzierbar.

Falls f_n eine Funktionenfolge ist, wobei f_n einmal stetig differenzierbar ist für jede $n \in \mathbb{N}$ und falls sowohl (f_n) als auch (f'_n) gleichmässig konvergieren mit $f_n \to f$ und $f'_n \to g$, dann ist auch f stetig differenzierbar mit f' = g.

(c) Sei $f: [-1,1] \to \mathbb{R}$ eine glatte Funktion, so dass

$$f(1/2) = 2$$
, $f'(1/2) = 0$, $f''(1/2) = -1$.

Welche der folgenden Aussagen gilt?

 $\hfill \square$ Die Funktion f besitzt ein lokales Maximum in 1/2.

 \square Die Funktion f besitzt ein lokales Minimum in 1/2.

 \Box Die Funktion f besitzt kein lokales Extremum in 1/2.

 \square Alle oben genannten Fälle sind möglich.

(d) Sei $f \colon [-1,1] \to \mathbb{R}$ eine glatte Funktion, so dass

$$f(0) = 2$$
, $f'(0) = f''(0) = 0$, $f'''(0) = -1$.

Welche der folgenden Aussagen gilt?

 \square Die Funktion f besitzt ein lokales Maximum in 0.

 \square Die Funktion f besitzt ein lokales Minimum in 0.

- \square Die Funktion f besitzt kein lokales Extremum in 0.
- ☐ Alle oben genannten Fälle sind möglich.
- (e) Sei $f: [-1,1] \to \mathbb{R}$ eine glatte Funktion, so dass

$$f(0) = 2$$
, $f'(0) = f''(0) = f'''(0) = 0$.

Welche der folgenden Aussagen gilt?

- \square Die Funktion f besitzt ein lokales Maximum in 0.
- \square Die Funktion f besitzt ein lokales Minimum in 0.
- \square Die Funktion f besitzt kein lokales Extremum in 0.
- ☐ Alle oben genannten Fälle sind möglich.

11.2. n-te Ableitung. Bestimmen Sie für die folgenden Funktionen die n-te Ableitung für alle $n \in \mathbb{N}^*$.

- (a) $f(x) = x^6 + x^5 x^2 + 6x 8$.
- **(b)** $g(x) = \ln x, \ x > 0.$
- (c) $h(x) = \frac{1}{x^2 + 5x + 6} = \frac{1}{x+2} \frac{1}{x+3}$.
- (d) $f(x) = (\sin x)^2 = \frac{1}{2}(1 \cos 2x)$.

11.3. a) Bestimme die lokalen Maxima und Minima von $f(x) = (\sin x)^3 + (\cos x)^3$ für $x \in \mathbb{R}$.

b) Bestimme die lokalen Maxima und Minima von

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \sqrt[3]{3x^3 - x^2}.$$

11.4. Taylorpolynom. Sei

$$f(x) = \ln(1 + (1+x)^2), \qquad x_0 = -1.$$

Bestimmen Sie:

- (a) das Taylorpolynom 2. Ordnung $T_2f(x;-1)$ und das Taylorpolynom 3. Ordnung $T_3f(x;-1)$,
- (b) mithilfe von T_2 eine Approximation von

$$f(x_0 + 0.01) = f(-0.99).$$