1 Computations

0.1. Finde inf und sup der folgenden Mengen.

(a)
$$A_1 = \{\frac{n^2 - 1}{n^2 + 1} : n \in \mathbb{N}\}$$
. inf $A_1 = -1$, sup $A_1 = 1$

(b)
$$A_2 \left\{ \frac{3n}{2n+1} - (-1)^n : n \in \mathbb{N} \right\}$$
. inf $A_2 = -1$, sup $A_2 = \frac{5}{2}$

0.2. Finde lim inf und lim sup der folgenden Folgen.

(a)
$$a_n = \sin(\pi \ln(n))$$
. $\liminf a_n = -1$, $\limsup a_n = 1$

(b)
$$b_n = \exp((-1)^n \sqrt[n]{n})$$
. $\liminf b_n = e^{-1}$, $\limsup b_n = e$

0.3. Finde den Grenzwert der folgenden Folgen.

(a)
$$\lim_{n\to\infty} (1+\frac{2}{n})^{3n} = e^6$$

(b)
$$\lim_{n\to\infty} \sqrt{n^2+3n} - \sqrt{n^2-1} = \frac{3}{2}$$

0.4. Gegeben ein Gebiet $D \subset \mathbb{R}$ und eine Funktion $f: D \to \mathbb{R}$, finde die Ableitung der Umkehrfunktion f^{-1} an einem bestimmten Punkt y_0 .

(a)
$$D = \mathbb{R}$$
, $f(x) = \ln(x + \sqrt{x^2 + 2})$, $y_0 = 0$. $(f^{-1})'(y_0) = \frac{3}{2}$

(b)
$$D = (\frac{9}{10}, \infty), g(x) = 3x + \frac{e^x}{x}, y_0 = e + 3. (g^{-1})'(y_0) = \frac{1}{3}$$

0.5. Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = x^2 e^{-x}$$

für $x \in \mathbb{R}$.

(a)
$$f'(x) = e^{-x}(2x - x^2)$$
. $f''(x) = e^{-x}(x^2 - 4x + 2)$

(b) x = 0 is a local minimum, x = 2 is a local maximum.

(c) Taylorpolynom: $x^2 - x^3$

0.6. Berechne den Wert der folgenden Grenzwerte.

(a)
$$\lim_{x\to 0} \frac{e^{x^2}-1-x^2}{x^4} = \frac{1}{2}$$

(b)
$$\lim_{x\to 0} \frac{\tan(3x)}{x} = 3$$

- **0.7.** Bestimme fur jede der folgenden Reihen, ob sie konvergiert oder nicht. Im Falle der Konvergenz bestimme, ob sie absolut konvergiert oder nicht.
- (a) $\sum_{n \in \mathbb{N}} \frac{\ln(n)}{n^2}$ converges absolutely.
- **(b)** $\sum_{n\in\mathbb{N}} \frac{(-1)^n n^2}{\sqrt{n^4+n^3}}$ doesn't converge.
- 0.8. Bestimme den Konvergenzradius der folgenden Potenzreihen.
- (a) $\sum_{n\in\mathbb{N}} \frac{2^n}{n^2} x^n$ has a convergence radius of $\rho = \frac{1}{2}$.
- **(b)** $\sum_{n\in\mathbb{N}} \frac{(-1)^n n!}{n^n} \cdot x^n$ has a convergence radius of $\rho = e$.
- **0.9.** Berechne die folgenden unbestimmten Integrale.
- (a) $\int \frac{x^2-1}{x^3+x} dx = \ln(x^2+1) \ln|x|$
- **(b)** $\int e^{3x} \cos(x) dx = \frac{1}{10} e^{3x} (\sin(x) + 3\cos(x))$
- **0.10.** Berechne die folgenden bestimmten Integrale.
- (a) $\int_0^1 x^2 \ln(1+x^3) dx = \frac{1}{3}(2\ln(2)-1) = \frac{1}{3}(\ln(4)-1)$
- **(b)** $\int_{\pi}^{2\pi} \sin(x)^2 dx = \frac{\pi}{2}$