Wahrscheinlichkeitstheorie und Statistik

Serie 8 - Lösungen

MC 8-1. (Gesetz der grossen Zahlen) Seien X_1, X_2, \ldots unabhängig und uniform verteilt auf [0, 1]. Welche Aussagen sind korrekt? (Mehrere Antworten sind möglich.)

- (a) $\frac{1}{n} \sum_{i=1}^{n} X_i \to \frac{1}{2}$ fast sicher
- (b) $\frac{1}{n} \sum_{i=1}^{n} (X_i \frac{1}{2}) \to 0$ fast sicher
- (c) $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \to \frac{1}{2}$ fast sicher
- (d) $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i \frac{1}{2}) \to 0$ fast sicher

MC 8-2. (Zentraler Grenzwertsatz) Seien X_1, X_2, \ldots unabhängig und uniform verteilt auf [0, 1] und sei Z standard-normalverteilt. Welche Aussagen sind korrekt? (Mehrere Antworten sind möglich.)

- (a) $\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}X_{i} > \frac{1}{2}) \to 0$
- (b) $\mathbb{P}(\frac{1}{n}\sum_{i=1}^{n}(X_i-\frac{1}{2})>\frac{1}{2})\to 0$
- (c) $\mathbb{P}(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i > \frac{1}{2}) \to \mathbb{P}(Z > \frac{1}{2})$
- (d) $\mathbb{P}(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i \frac{1}{2}) > \frac{1}{2}) \to \mathbb{P}(Z > \frac{1}{2})$

Aufgabe 8-3. (Nicht-lineare Regression, Supervised Learning)

- (a) Sei P die Verteilung von (X, Y), für X uniform verteilt auf [0, 1] und für Y gegeben X normalverteilt mit Mittelwert $\sin(X)$ und Varianz 1. Welche stetigen Funktionen $f: [0, 1] \to \mathbb{R}$ minimieren $E((Y f(X))^2)$, wobei E den Erwartungswert unter P bezeichnet?
- (b) Sei P_n die empirische Verteilung der unabhängigen P-verteilten Zufallsvariablen $(X_1, Y_1), \ldots, (X_n, Y_n)$. Welche Funktionen $f \in C([0, 1])$ minimieren $E_n((Y f(X))^2)$, wobei E_n den Erwartungswert unter P_n bezeichnet?

Konvergieren für grosses n die Minimierer von (b) gegen Minimierer von (a)?

Aufgabe 8-4. (Poisson-Verteilung) Für jedes $n \in \mathbb{N}$ sei X_n binomialverteilt mit Parametern $n \in \mathbb{N}$ und λ/n . Dementsprechend kann X_n als Summe von unabhängigen Bernoulli-verteilten Zufallsvariablen mit linear abnehmender Erfolgswahrscheinlichkeit gesehen werden. Zeigen Sie, dass X_n in Verteilung gegen die Poisson-Verteilung konvergiert, d.h.

$$\forall k \in \{0, 1, \dots\}: \qquad \lim_{n \to \infty} \mathbb{P}(X_n = k) = \frac{\lambda^k e^{-\lambda}}{k!}.$$

Anmerkung: Das Beispiel illustriert, dass neben dem Gesetz der grossen Zahlen und dem zentralen Grenzwertsatz zahlreiche weitere Limiten von Interesse sein können; hier etwa ein Limes seltener Ereignisse.

Aufgabe 8-5. (Monte Carlo Approximation von π) Beweisen Sie, dass der Monte-Carlo Algorithmus [1] numerische Approximationen π_n liefert, sodass $\mathbb{E}(\pi_n) = \pi$ und $\mathbb{E}((\pi_n - \pi)^2) \leq 3/n$.

References

[1] Philipp Harms. *Monte Carlo Methods*. Verfügbar unter: https://gist.github.com/philipp-harms/0404a6cd648be8fc59df4bc06794a566. April 2025.