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Probability and Statistics
Exercise sheet 10 - Solutions

MC 10.1. Let n ∈ N and let X1, . . . , Xn be i.i.d. and standard normally distributed, i.e., Xi ∼ N (0, 1).
Define

Y :=
n∑

i=1
X2

i .

In particular, Y is a χ2
n-distributed random variable. (Exactly one answer is correct in each question.)

1. What is the value of E[Y ]?

(a) E[Y ] = 0.
(b) E[Y ] = n2.

(c) E[Y ] = n.

(d) E[Y ] =
√
n.

2. What is the value of Var[Y ]?

(a) Var[Y ] = n2.

(b) Var[Y ] = 2n.
(c) Var[Y ] = n.

(d) Var[Y ] = 2n2.

3. Let now n = 12. What is the approximation of the probability P
[ ∣∣Y

n − 1
∣∣ ≤ 0.75

]
using the CLT?

(a) P
[ ∣∣Y

n − 1
∣∣ ≤ 0.75

]
≈ 2Φ

( 3
4
√

6
)

− 1.
(b) P

[ ∣∣Y
n − 1

∣∣ ≤ 0.75
]

≈ 2Φ
( 7

4
√

6
)
.

(c) P
[ ∣∣Y

n − 1
∣∣ ≤ 0.75

]
≈ Φ

(√
7
4

)
.

(d) P
[ ∣∣Y

n − 1
∣∣ ≤ 0.75

]
≈ 1 − 2Φ

(√
6
)
.

Solution:

(i) (c). From the definition of Y and linearity of expectation we have

E[Y ] =
n∑

i=1
E[X2

i ] =
n∑

i=1
Var[Xi] =

n∑
i=1

1 = n.

(ii) (b). Using that (Xn)n∈N are i.i.d., we have E[X2
i X

2
j ] = E[X2

i ]E[X2
j ] = (E[X2

1 ])2 for any i ̸= j. It
follows

E[Y 2] = E[(X2
1 +X2

2 + · · · +X2
n)2] = E

[ n∑
i=1

n∑
j=1

X2
i X

2
j

]
= nE[X4

1 ] + n(n− 1)(E[X2
1 ])2.
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Using again E[X2
1 ] = 1 and

E[X4
1 ] =

∫ ∞

−∞
x4φ(x)dx

= 1√
2π

∫ ∞

−∞
x4e−x2/2dx

= 1√
2π
(

− x3e−x2/2)∣∣∣∞
x=−∞

+ 3√
2π

∫ ∞

−∞
x2e−x2/2dx

= 0 + 3 × E[X2
1 ]

= 3,

where we have used integration by parts, we obtain

E[Y 2] = 3n+ n(n− 1) = n2 + 2n,

and thus
Var[Y ] = E[Y 2] − (E[Y ])2 = (n2 + 2n) − n2 = 2n.

Alternative solution: Since X1, . . . , Xn are independent, so are X2
1 , . . . , X

2
n, and so we have

Var[Y ] =
n∑

i=1
Var[X2

i ] = n× Var[X2
1 ].

As above,
Var[X2

1 ] = E[X4
1 ] − (E[X2

1 ])2 = 3 − 1 = 2,

and so
Var[Y ] = 2n.

(iii) (a). Let Zi := X2
i for i ∈ {1, . . . , n}. Then Y =

∑n
i=1 Zi with (Zn)n∈N i.i.d. and Zi ∼ χ2

1, and
so E[Zi] = 1 and Var[Zi] = 2. By the central limit theorem:

P
[∣∣∣∣Yn − 1

∣∣∣∣ ≤ 0.75
]

= P
[∣∣∣∣Y − n

n

∣∣∣∣ ≤ 3
4

]
= P

[∣∣∣∣Y − n√
2n

∣∣∣∣ ≤ 3
4

√
n

2

]
= P

[
−3

4

√
n

2 ≤ Y − n√
2n

≤ 3
4

√
n

2

]
≈ Φ

(
3
4

√
n

2

)
− Φ

(
−3

4

√
n

2

)
= 2Φ

(
3
4

√
n

2

)
− 1.

For n = 12, we thus have

P
[∣∣∣∣Yn − 1

∣∣∣∣ ≤ 0.75
]

≈ 2Φ
(

3
4

√
6
)

− 1.
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Exercise 10.2. Let U1, U2, U3 be i.i.d. random variables uniformly distributed on [0, 1]. We consider the
random variables

L := min{U1, U2, U3} and M := max{U1, U2, U3}.

(a) Show that M and L have densities and find them.

(b) Show that for ϕ, ψ : R → R piecewise continuous and bounded, the following holds:

E[ϕ(M)ψ(L)] =
∫ ∞

−∞

∫ ∞

−∞
ϕ(m) · ψ(ℓ) · 6(m− ℓ)1{0≤ℓ≤m≤1}dℓdm.

(c) Use (b) to determine the joint distribution function and the joint density of (M,L).

Solution:

(a) We first note that P[M ∈ [0, 1]] = 1. For m ∈ [0, 1], using the independence and uniformity of
U1, U2, and U3, we have:

P[M ≤ m] = P[U1 ≤ m,U2 ≤ m,U3 ≤ m] =
(
P[U1 ≤ m]

)3 = m3.

So the distribution function FM of M is given by

FM (m) =


0 for m < 0,
m3 for 0 ≤ m ≤ 1,
1 for m > 1.

We see that FM is continuous and piecewise continuously differentiable. Hence, the density
exists and for m ∈ (0, 1):

fM (m) = d
dmFM (m) = 3m2.

We thus obtain the density

fM (m) =


0 for m < 0,
3m2 for 0 ≤ m ≤ 1,
0 for m > 1.

To find the density of L, we first note that we have

P[L ≥ ℓ] = P[U1 ≥ ℓ, U2 ≥ ℓ, U3 ≥ ℓ] =
(
P[U1 ≥ ℓ]

)3 = (1 − ℓ)3.

Consequently, the distribution function FL of L is given by

FL(ℓ) =


0 for ℓ < 0,
1 − (1 − ℓ)3 for 0 ≤ ℓ ≤ 1,
1 for ℓ > 1.

Thus, analogously as before, we obtain that the density exists and is given by

fL(ℓ) = 3(1 − ℓ)21{ℓ∈[0,1]}.
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(b) Let ϕ, ψ : R → R be piecewise continuous and bounded. Using the joint density of U1, U2, U3
we compute

E[ϕ(M) · ψ(L)] =
∫ 1

0

∫ 1

0

∫ 1

0
ϕ(max{u1, u2, u3})ψ(min{u1, u2, u3})du1du2du3.

We distinguish cases depending on which variable is the maximum and which is the minimum.
For the case u3 ≤ u2 ≤ u1 (i.e. m = u1 and ℓ = u3) we have:∫ 1

0

∫ 1

0

∫ 1

0
ϕ(u1)ψ(u3)1{u3≤u2≤u1}du1du2du3

=
∫ 1

0
ϕ(u1)

(∫ u1

0
ψ(u3)

(∫ u1

u3

du2

)
du3

)
du1

=
∫ 1

0

∫ 1

0
ϕ(u1)ψ(u3)(u1 − u3)1{u3≤u1}du1du3

Since there are in total 3! = 6 options how u1, u2, u3 can be ordered (u3 ≤ u2 ≤ u1, u2 ≤ u3 ≤ u1,
u2 ≤ u2 ≤ u3, . . . ), which are symmetric, we obtain

E[ϕ(M)ψ(L)] = 6 ×
∫ ∞

−∞

∫ ∞

−∞
ϕ(m)ψ(ℓ)(m− ℓ)1{0≤ℓ≤m≤1}dmdℓ,

as required.

Remark: Note that, due to continuity of the uniform distribution and independence, we have
P[U1 = U2] = P[U1 = U3] = P[U2 = U3] = 0, which can be verified by straightforward compu-
tations. We thus do not care that the cases u1 = u2 = u3, u2 = u3 < u1, etc..., are counted
multiple times.

(c) For a, b ∈ R, choose ϕ(x) := 1{x≤a} and ψ(x) := 1{x≤b} to get

FM,L(a, b) = P[M ≤ a, L ≤ b] = E[1{M≤a}1{L≤b}]

=
∫ a

−∞

∫ b

−∞
6(m− ℓ)1{0≤ℓ≤m≤1}dmdℓ

So the joint density is
fM,L(m, ℓ) = 6(m− ℓ)1{0≤ℓ≤m≤1}.

To compute the joint distribution function, we evaluate the integral above.

• For a ≤ 0 or b ≤ 0, we have FM,L(a, b) = 0.
• For b ≥ 1 and a ∈ [0, 1], FM,L(a, b) = FM (a) = a3.
• For a ≥ 1 and b ∈ [0, 1], FM,L(a, b) = FL(b) = 1 − (1 − b)3.
• For 0 ≤ a ≤ b ≤ 1, FM,L(a, b) = P[M ≤ a] = a3.
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• For 0 ≤ b ≤ a ≤ 1,

P[M ≤ a, L ≤ b] =
∫ a

0

(∫ min{b,m}

0
6(m− ℓ)dℓ

)
dm

=
∫ a

0
6mℓ− 3ℓ2

∣∣∣min{b,m}

ℓ=0
dm

=
∫ a

0

[
6m× min{b,m} − 3 min{b,m}2

]
dm

=
∫ b

0

[
6m× min{b,m} − 3 min{b,m}2

]
dm

+
∫ a

b

[
6m× min{b,m} − 3 min{b,m}2

]
dm

=
∫ b

0

[
6m×m− 3m2]dm

+
∫ a

b

[
6m× b− 3b2]dm

=
∫ b

0
3m2dm+

∫ a

b

3b(2m− b)dm

= b3 + 3ab(a− b).

Exercise 10.3. Let (Xi)i∈N, (Yi)i∈N, and (Zi)i∈N be sequences of i.i.d. random variables with

P[X1 = 1] = P[X1 = −1] = 1/2,

and similarly P[Y1 = 1] = P[Y1 = −1] = 1/2 as well as P[Z1 = 1] = P[Z1 = −1] = 1/2, which are also
independent of each other. Put differently, the sequence

(X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, . . .)

is a sequence of i.i.d. random variables.

We define the partial sums

S(x)
n :=

n∑
i=1

Xi, S(y)
n :=

n∑
i=1

Yi, and S(z)
n :=

n∑
i=1

Zi.

The sequence
(
(S(x)

n , S
(y)
n , S

(z)
n )
)

n∈N is called a random walk in Z3. Let α > 1/2. Show that

lim
n→∞

P
[
∥(S(x)

n , S(y)
n , S(z)

n )∥ ≤ nα
]

= 1,

where ∥(x, y, z)∥ :=
√
x2 + y2 + z2 is the Euclidean norm.

Hint: First, apply the CLT to show that for all α > 1/2, we have

lim
n→∞

P
[
|S(x)

n | ≤ nα
]

= lim
n→∞

P
[
|S(y)

n | ≤ nα
]

= lim
n→∞

P
[
|S(z)

n | ≤ nα
]

= 1.
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Then, notice that for α′ ∈ (1/2, α) we have:(
{|S(x)

n | ≤ nα′
} ∩ {|S(y)

n | ≤ nα′
} ∩ {|S(z)

n | ≤ nα′
}
)

⊆
{

∥(S(x)
n , S(y)

n , S(z)
n )∥ ≤

√
3nα′

}
.

Use this to conclude.

Solution: We first show that for all α > 1/2, we have

lim
n→∞

P
[
|S(x)

n | ≤ nα
]

= 1. (1)

Since E[X1] = 0 and Var[X1] = 1, we obtain by the CLT that for any a ∈ R:

P
[
S(x)

n ≤ a
√
n
]

= P

[
S

(x)
n√
n

≤ a

]
n→∞−−−−→ Φ(a),

and therefore also

P
[
|S(x)

n | ≤ a
√
n
]

= P
[
S(x)

n ≤ a
√
n
]

− P
[
S(x)

n ≤ −a
√
n
]

n→∞−−−−→ Φ(a) − Φ(−a) = 2Φ(a) − 1.

Since, for a fixed a > 0 and for sufficiently large n we have a
√
n ≤ nα, monotonicity implies

lim
n→∞

P
[
|S(x)

n | ≤ nα
]

≥ lim
n→∞

P
[
|S(x)

n | ≤ a
√
n
]

= 2Φ(a) − 1, a > 0.

As this inequality holds for every a > 0, we can write

lim
n→∞

P
[
|S(x)

n | ≤ nα
]

≥ sup
a>0

{2Φ(a) − 1} = 1,

and so property (1) follows. Analogously, we can show that the same result holds for S(y)
n and S

(z)
n .

We now show that for all α > 1/2, we have limn→∞ P
[
∥(S(x)

n , S
(y)
n , S

(z)
n )∥ ≤ nα

]
= 1.

Choose α′ ∈ (1/2, α) and observe(
{|S(x)

n | ≤ nα′
} ∩ {|S(y)

n | ≤ nα′
} ∩ {|S(z)

n | ≤ nα′
}
)

⊆
{

∥(S(x)
n , S(y)

n , S(z)
n )∥ ≤

√
3nα′

}
.

Since nα ≥
√

3nα′ for large n, we get

lim
n→∞

P
[
∥(S(x)

n , S(y)
n , S(z)

n )∥ ≤ nα
]

≥ lim
n→∞

P
[
∥(S(x)

n , S(y)
n , S(z)

n )∥ ≤
√

3 · nα′
]

≥ lim
n→∞

P
[
|S(x)

n | ≤ nα′
, |S(y)

n | ≤ nα′
, |S(z)

n | ≤ nα′
]

= 1,

where the equality in the last step follows from the union bound, since we have

lim
n→∞

P
[
|S(x)

n | ≤ nα′
, |S(y)

n | ≤ nα′
, |S(z)

n | ≤ nα′
]

= 1 − lim
n→∞

P
[{

|S(x)
n | > nα′}

∪
{

|S(y)
n | > nα′}

∪
{

|S(z)
n | > nα′}]

≥ 1 − lim
n→∞

(
P
[
|S(x)

n | > nα′
]

+ P
[
|S(y)

n | > nα′
]

+ P
[
|S(z)

n | > nα′
] )

= 1,

where we have used (1) in the last step.
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Exercise 10.4. The median m of a distribution F is defined by m := F−1(1/2) = inf{x ∈ R : F (x) ≥ 1/2}.
Let X1, X2, . . . be i.i.d. random variables with distribution function F and median m = 0. Let Zn denote
the sample median of X1, . . . , Xn, that is, Zn is the middle observation.

More formally Zn = X(k) where k =
[

n
2 + 1

]
and X(1) ≤ · · · ≤ X(n) denote the order statistics of X1, . . . , Xn

(i.e. X(1) = min{Xi | i ∈ {1, . . . , n}}, X(n) = max{Xi | i ∈ {1, . . . , n}}, etc.), and [x] denotes the integer part
of x.

(a) Let Y x
i = 1{Xi≤x} and define Sx

n :=
∑n

i=1 Y
x

i . Compute E[Sx
n] and Var[Sx

n].

(b) Express the event {Zn ≤ x} using the random variable Sx
n.

(c) Using the CLT, give an approximation for P[Zn ≤ x] as n → ∞.

(d) (*) Find the limit

lim
n→∞

1/2 − αn√
1
nαn(1 − αn)

,

where αn := F
(

x√
n

)
.

Solution:

(a) We have 1 − P[Y x
i = 0] = P[Y x

i = 1] = P[Xi ≤ x] = F (x), and so Y x
i ∼ Bernoulli(F (x)).

Consequently Sx
n ∼ Binomial(n, F (x)), and so we have

E[Sx
n] = nF (x), Var[Sx

n] = nF (x)(1 − F (x)).

(b) We observe that
{Zn ≤ x} = {Sx

n ≥ k},

where k =
[

n
2 + 1

]
.

(c) Using the central limit theorem, we obtain

P[Zn ≤ x] = P[Sx
n ≥ k]

= P
[
Sx

n

n
≥ k

n

]

= P

 Sx
n

n − F (x)√
1
nF (x)(1 − F (x))

≥
k
n − F (x)√

1
nF (x)(1 − F (x))


≈ 1 − Φ

 k/n− F (x)√
1
nF (x)(1 − F (x))


= Φ

−
k
n − F (x)√

1
nF (x)(1 − F (x))

 .

7
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(d) Define αn := 1
nE
[
Sn

(
x√
n

)]
= F

(
x√
n

)
and note

Var
[
Sn

( x√
n

)]
= αn(1 − αn)

n
.

We examine the limit

lim
n→∞

1/2 − αn√
1
nαn(1 − αn)

= lim
n→∞

−αn − 1/2
x√
n

x√
αn(1 − αn)

.

Note that

lim
n→∞

αn − 1/2
x√
n

= lim
n→∞

F
(

x√
n

)
− F (0)

x√
n

= F ′(0),

and
lim

n→∞
αn = lim

n→∞
F

(
x√
n

)
= F (0) = 1/2.

Thus,
lim

n→∞

1/2 − αn√
1
nαn(1 − αn)

= −2F ′(0)x.

Exercise 10.5. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ U([θ − 1, θ]) under Pθ, where θ ∈ R is
an unknown parameter. We consider the following estimators for θ:

T
(n)
1 = 1

n

n∑
i=1

(
Xi + 1

2

)
and T

(n)
2 = max{X1, . . . , Xn}.

(a) Determine whether the estimators are unbiased.

(b) Compute the variances Varθ[T (n)
1 ] and Varθ[T (n)

2 ].

(c) Compute the mean squared error

MSEθ[T (n)
i ] := Eθ[(T (n)

i − θ)2], i ∈ {1, 2}.

Remark: Here, Eθ and Varθ denote the mean and the variance under probability measure Pθ.

Solution:

(a) Fix θ ∈ R. As Xi ∼ U([θ − 1, θ]), we have

Eθ[T (n)
1 ] =

(
1
n

n∑
i=1

Eθ[Xi]
)

+ 1
2 = Eθ[X1] + 1

2 = θ − 1
2 + 1

2 = θ.

So, T (n)
1 is unbiased.
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Define Y θ
i := Xi − (θ − 1) so that Yi ∼ U([0, 1]) under Pθ. We further define

Y
(n)

θ := max{Y θ
1 , . . . , Y

θ
n } = T

(n)
2 − (θ − 1).

The distribution function and the density of Y (n)
θ are respectively (see Exercise 10.2)

F
Y

(n)
θ

(a) =


0 if a < 0,
an if a ∈ [0, 1],
1 if a > 1,

and f
Y

(n)
θ

(a) = nan−11{a∈[0,1]}. (2)

Hence,

Eθ[Y (n)
θ ] =

∫ ∞

−∞
af

Y
(n)

θ

(a)da = n

∫ 1

0
anda = n

n+ 1 ,

and so
Eθ[T (n)

2 ] = Eθ[Y (n)
θ ] + (θ − 1) = θ − 1

n+ 1 .

Thus, T (n)
2 is not unbiased.

(b) We have

Varθ[T (n)
1 ] = 1

n2

n∑
i=1

Varθ[Xi] = 1
n

Varθ[X1] = 1
12n.

Now, using (2), we compute

Eθ[(Y (n)
θ )2] = n

∫ 1

0
an+1da = n

n+ 2 , so

Varθ[T (n)
2 ] = Varθ[Y (n)

θ ] = Eθ[(Y (n)
θ )2] − (Eθ[Y (n)

θ ])2 = n

n+ 2 −
(

n

n+ 1

)2
= n

(n+ 1)2(n+ 2) .

(c) Finally, we can compute

MSEθ[T (n)
1 ] = Varθ[T (n)

1 ] + (Eθ[T (n)
1 ] − θ)2 = Varθ[T (n)

1 ] = 1
12n.

MSEθ[T (n)
2 ] = Varθ[T (n)

2 ] + (Eθ[T (n)
2 ] − θ)2 = n

(n+ 1)2(n+ 2) + 1
(n+ 1)2 = 2

(n+ 1)(n+ 2) .

Exercise 10.6. We model the water level above the critical flood mark (140 cm above normal) in Lake Zurich.
Let X denote the water height (in cm) above the critical mark. We use a generalized Pareto distribution:

fX(x; θ) =
{

1
θ (1 + x)−(1+ 1

θ ) for x > 0,
0 for x ≤ 0,

where θ > 0 is an unknown parameter to be estimated based on observations x1, . . . , xn. These are modeled
as realizations of i.i.d. random variables X1, . . . , Xn with density fX(x; θ). We define the estimator by

T (n) = 1
n

n∑
i=1

log(1 +Xi).

9
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(a) Compute the expectation and variance of T (n) under Pθ for each θ > 0.

Hint: Define Yi := log(1 +Xi). Then Yi ∼ Exp(1/θ), i.e., the density of Yi is fYi(y) = 1
θ e

−y/θ1{y≥0}.

(b) Is T (n) an unbiased estimator for θ?

(c) Compute the mean squared error MSEθ[T (n)].

(d) Find the maximum likelihood estimator for θ.

Solution:

(a) Linearity of expectation gives

Eθ[T (n)] = Eθ

[
1
n

n∑
i=1

log(1 +Xi)
]

= 1
n

n∑
i=1

Eθ[log(1 +Xi)] = Eθ[log(1 +X1)].

By the hint, Y1 := log(1 +X1) ∼ Exp(1/θ). Therefore,

Eθ[Y1] = θ, and Varθ[Y1] = θ2.

We thus conclude
Eθ[T (n)] = Eθ[Y1] = θ.

Similarly, we can compute thanks to independence

Varθ[T (n)] = Varθ

[
1
n

n∑
i=1

log(1 +Xi)
]

= 1
n2

n∑
i=1

Varθ[log(1 +Xi)]

= 1
n

Varθ[log(1 +X1)] = 1
n
θ2.

(b) From (a), we know that Eθ[T (n)] = θ, so T (n) is an unbiased estimator of θ.

(c) Since the estimator is unbiased (see part b), the mean squared error simplifies to:

MSEθ[T (n)] = Varθ[T (n)] = θ2

n
.

(d) The likelihood function is

L(x1, . . . , xn; θ) =
n∏

i=1
fX(xi; θ) = 1

θn

n∏
i=1

(1 + xi)−(1+ 1
θ )1{x1≥0,...,xn≥0}.

Thus, the log-likelihood function is

logL(x1, . . . , xn; θ) = log
(

1
θn

n∏
i=1

(1 + xi)−(1+ 1
θ )

)
1{x1≥0,...,xn≥0}

=
(

− n log θ −
(

1 + 1
θ

) n∑
i=1

log(1 + xi)
)

1{x1≥0,...,xn≥0}.
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Differentiating with respect to θ gives

∂

∂θ
logL(x1, . . . , xn; θ) = −n

θ
+ 1
θ2

n∑
i=1

log(1 + xi), x1 ≥ 0, . . . , xn ≥ 0.

We further have

−n

θ
+ 1
θ2

n∑
i=1

log(1 + xi) = 0 ⇐⇒ nθ =
n∑

i=1
log(1 + xi) ⇐⇒ θ = 1

n

n∑
i=1

log(1 + xi).

Thus, the point

θ⋆ = 1
n

n∑
i=1

log(1 + xi)

is a unique stationary point.

We compute the second derivative:

∂2

∂θ2 logL(x1, . . . , xn; θ) = n

θ2 − 2
θ3

n∑
i=1

log(1 + xi), x1 ≥ 0, . . . , xn ≥ 0.

Plugging in θ⋆, we verify

∂2

∂θ2 logL(x1, . . . , xn; θ⋆) = n

(θ⋆)2 − 2
(θ⋆)3

n∑
i=1

log(1 + xi)

= 1
θ⋆

( n
θ⋆

− 2
(θ⋆)2

n∑
i=1

log(1 + xi)
)

= 1
θ⋆

(
− 1

(θ⋆)2

n∑
i=1

log(1 + xi)
)

= − 1
(θ⋆)3

n∑
i=1

log(1 + xi)

< 0.

This confirms that θ⋆ is a maximum of the log-likelihood function.

We conclude that the maximum likelihood estimator for θ is

TML = 1
n

n∑
i=1

log(1 +Xi) = T (n).
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