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PROBABILITY AND STATISTICS

Exercise sheet 10 - Solutions

MC 10.1. Let n € N and let X3,...,X,, be i.i.d. and standard normally distributed, i.e., X; ~ N(0,1).
Define .
Y=Y X7
i=1

In particular, Y is a x2-distributed random variable. (Exactly one answer is correct in each question.)
1. What is the value of E[Y]?
(a)
(b)
(c)
(d) Vn.
2. What is the value of Var[Y]?

ElY] = 0.
E[Y] = n?.
E[Y] =
E[Y] =

n.

3. Let now n = 12. What is the approximation of the probability ]P’[ |% — 1| < 0.75] using the CLT?

() B[ 1] < 0.75] = 22 (3v6) -
(b) P[|¥ - 1] <0.75] ~ 20 (116).
() P[|X—1] <075 ~ @ (/3)
(d) P[] —1]| <0.75] = 1 — 29 (V6)

Solution:

(i) (c). From the definition of Y and linearity of expectation we have

E[Y] = Z]E[XE] => Var[Xj]=> 1=n.

i=1 =1

(ii) (b). Using that (X, )nen are i.i.d., we have IE[XEXJQ] = E[XE]E[XJQ] = (E[X?])? for any i # j. It
follows

E[Y?] = E[(X] + X3 +--- + X7)? {zn: zn: XQXQ} = nE[X{] + n(n — 1)(E[X]])*.
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Using again E[X?] = 1 and

and thus
Var[Y]

B = [

l‘4

= E[Y?

Alternative solution: Since Xq,...,

o(z)dz

— (E[Y])* =

X, are independent, so are X2, ...,

2 —:c2/2dx
\/27r/
1 2ot 2/2 / 22 —z2/2
= e dx
\/27'(( ) T=—00 \/27r
=0+4+3x E[Xlz]
= 37

where we have used integration by parts, we obtain

E[Y?] = 3n+n(n — 1) = n? + 2n,

(n? +2n) —n? = 2n.

X2, and so we have

(iii)

Var[Y] = ZVar[Xf] =n x Var[X?Z].

As above,
Var|

and so

(a). Let Z; == X2 fori € {1,...,

so E[Z;] =1 and Var[Z

For n = 12, we thus have

PHi]WS&%]zQ@(}@)L

;] = 2. By the central limit theorem:

P{Y—4<mﬂzp‘y <1
n 4
Y —n 3 /n
‘\/271 — 4 2}
_p| 3 p Yo 3 [n
o 4V2T Von T4V 2

=1

(E[X7])*=3-1=2,

X3 =E[X}] - =

Var[Y] = 2n.

n}. Then Y = Y1 | Z; with (Z,)nen ii.d. and Z; ~ x3, and
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Exercise 10.2. Let Uy, Us, Us be i.i.d. random variables uniformly distributed on [0,1]. We consider the
random variables
L =min{U;,U3,Us} and M = max{U;,Us,Us}.

(a) Show that M and L have densities and find them.

(b) Show that for ¢, : R — R piecewise continuous and bounded, the following holds:
BlouL)] = [ [ otm)-0(0)- 60m -~ Dl jpcremedidm

(c) Use (b) to determine the joint distribution function and the joint density of (M, L).

Solution:

(a) We first note that P[M € [0,1]] = 1. For m € [0, 1], using the independence and uniformity of
Ui, Us, and Us, we have:

P[M S m} = P[Ul S m, U2 S m, U3 S m] = (P[Ul S m]>3 = m3-
So the distribution function Fj; of M is given by

0 for m < 0,
Fy(m)=<{m3 for0<m<1,
1 for m > 1.

We see that F); is continuous and piecewise continuously differentiable. Hence, the density
exists and for m € (0,1):

Far(m) = %FM(W 32,

We thus obtain the density

0 for m < 0,
fu(m)=<3m? for0<m<1,
0 for m > 1.

To find the density of L, we first note that we have
P[L > () =P[Uy > £,Uy > £,Us > €] = (P[U1 > £))° = (1 - 0)°.

Consequently, the distribution function Fy, of L is given by

0 for £ < 0,
Fr(f)=¢1—(1-4¢)3 for0<¢<1,
1 for £ > 1.

Thus, analogously as before, we obtain that the density exists and is given by

fL(é) == 3(1 - 6)21{56[0,1]}'
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(b) Let ¢,% : R — R be piecewise continuous and bounded. Using the joint density of Uy, Us, Us
we compute

1 1 1
E[6(M) - (L)] = / / / d(maxc{us, us, 13 } )b (min{usy, uz, us })dus dusdu.

We distinguish cases depending on which variable is the maximum and which is the minimum.
For the case uz < ug < wuy (i.e. m = uy and £ = ug) we have:

/01 /01 /01 (1)1 (113) 1 {1y <up<uy y dur dusdus
- /01 d(u1) </0“1 P(us) (/u:l dug) du3) duy

1 1
= / / B(u1)Y(uz)(ur — u3)1 iy, <y, ydurdus
o Jo

Since there are in total 3! = 6 options how w1, us, uz can be ordered (ug < uz < uy, uz < ug < uy,
us < us < wug, ...), which are symmetric, we obtain

BONUE] = 6% [ [ omu(0m - Olpcrcmendmat

as required.

Remark: Note that, due to continuity of the uniform distribution and independence, we have
P[U; = U] = P[U; = Us] = P[Us = Us] = 0, which can be verified by straightforward compu-
tations. We thus do not care that the cases u; = us = ug,us = ug < uq, etc..., are counted
multiple times.

(c) For a,b € R, choose ¢(z) == 1{z<q} and ¥(z) == L{z<p} to get

Fyp(a,b) = PIM < a, L <b] = E[1{p<ay1z<p}]
/ / m f 1{0<g<m<1}dmd€

Jarn(m, £) = 6(m — €)1 o<p<m<i)-

So the joint density is

To compute the joint distribution function, we evaluate the integral above.

o For a <0orb<0, wehave Far 1.(a, b):0

o Forb>1andac€[0,1], Farr(a,b) = Fy(a) = a.

e Fora>1andbe|0,1], Farr(a,b) = Fr(b) =1—(1—b)3.
e For 0<a<b<1, Fyr(a,b) =P[M < a] =a?.
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e For0<b<a<l,

a min{b,m}
PM <a,L <} :/ (/ 6(m—€)d€)dm
0 0
min{b,m}

:/ 6me — 302
0 =0

= / [6m x min{b, m} — Smin{b,m}Q]dm
0

m

_ /0 ' [6m x min{b,m} — 3min{b,m}?|dm

+ /b ’ [6m x min{b, m) — 3 min{b, m)?|dm
= /Ob [6m x m — 3m*]dm

+/ba [6m % b— 3b%]dm

b a
= / 3m2*dm + / 3b(2m — b)dm

0 b
=03 + 3ab(a — b).

Exercise 10.3. Let (X;)ien, (Y3)ien, and (Z;);en be sequences of i.i.d. random variables with
P[X; =1]=P[X; = -1] =1/2,

and similarly P[Y; = 1] = P[Y; = —1] = 1/2 as well as P[Z; = 1] = P[Z; = —1] = 1/2, which are also
independent of each other. Put differently, the sequence

(Xla }/17 Z17 X2a }/2; Z27 X3a }/3) Z37 .. )
is a sequence of i.i.d. random variables.
We define the partial sums
S = ZX“ SW = ZYi7 and S = Z Z;.
i=1 i=1 i=1

The sequence ((Sff), 57(5;)7 Sr(f)))n is called a random walk in Z®. Let o > 1/2. Show that

eN

lim P[[(S$, 5%, 5 <n®] =1,

n—oo

where ||(z,y, 2)|| == /22 + y? + 22 is the Euclidean norm.

Hint: First, apply the CLT to show that for all a > 1/2, we have

b 51 0] =t 5 0] =t 2 591 <] <.
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Then, notice that for o/ € (1/2, a) we have:
(1557 < n'y N (18] <m0 {155 < n'}) € {58, 59, S8 < vEn ).

Use this to conclude.

Solution: We first show that for all & > 1/2, we have

lim P [|s§f>| < na] =1 (1)

n—oo
Since E[X1] = 0 and Var[X;] = 1, we obtain by the CLT that for any a € R:

()
snn Sa] ", ().

vn

P [S,(Lz) < a\/ﬁ} =P [

and therefore also
P||S@)] < a\/ﬁ} =P [S,(f) < a\/ﬁ} -P [S,(f) < —a\/ﬁ} 272, &(a) — B(—a) = 28(a) — 1.
Since, for a fixed a > 0 and for sufficiently large n we have a\/n < n®, monotonicity implies
Jim P {|S,(f)| < na] > lim P {|S7(f)| < a\/ﬁ] =2P(a)—1, a>0.

As this inequality holds for every a > 0, we can write

nli_}rr;oIP’ [|S’T(Lx)| < no‘} > il;}()){%b(a) -1} =1,
and so property follows. Analogously, we can show that the same result holds for S and S
We now show that for all & > 1/2, we have lim,_,o0 P [||(S£f>, S, 8P| < na} —1.
Choose o € (1/2,«) and observe

(181 <nyn{IsP1 < ny n {182 < n'}) € {118, 5, ) < V3’|

Since n® > \/gna/ for large n, we get
tim P (857, 50, 5 < n*| > lm P[I(s$, S, 80 < VB ]

n—oo

> lim P [|S0] <0, [SP] <0, |5] < 0] =1,

n—oo
where the equality in the last step follows from the union bound, since we have

lim P |55 < 0™, [SP] < n®,8(] < ']

n—oo
=1 lim P [{|S,<f>\ >0 U {ISW] > n®} U{|SP)] > no }}
>1— lim (IP [|S,(f>| > n@} +P [|S,(f’>| > na,} +P [|S§f)\ > no‘/} )

n—oo

= 1,

where we have used in the last step.
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Exercise 10.4. The median m of a distribution F is defined by m := F~1(1/2) = inf{z € R: F(x) > 1/2}.
Let X1, Xo,... be i.i.d. random variables with distribution function F' and median m = 0. Let Z,, denote
the sample median of X1,..., X, that is, Z, is the middle observation.

More formally Z,, = X ;) where k = [% + 1] and X(1) < -+ < X(,) denote the order statistics of Xi,..., X,
(ie. Xy =min{X;|iec {1,...,n}}, X,y = max{X;|i € {1,...,n}}, etc.), and [z] denotes the integer part
of z.

(a) Let Y = 1;x,<,) and define S% :== 3" | ¥V;*. Compute E[SZ] and Var[S}].
(b) Express the event {Z,, < x} using the random variable S¥.

(c) Using the CLT, give an approximation for P[Z, < x] as n — oo.
(d) (*) Find the limit

1/2 —
lim —/ an ,
n—oo %an(l . Oln)

where «,, .= F (%)

Solution:

(a) We have 1 — P[Y;* = 0] = P[Y* = 1] = P[X; < 2] = F(z), and so Y ~ Bernoulli(F(z)).
Consequently S* ~ Binomial(n, F'(z)), and so we have

E[S;] = nF(x), Var[S;]|=nF(z)(1— F(x)).
(b) We observe that
{Zn <a} ={S; 2 k},
where k = [% + 1].
(c) Using the central limit theorem, we obtain

P[Z, < z] =P[S; > k]

o[
n n
5 — F(a) k— p(a)
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(d) Define «,, = %E{Sn(in)] =F (%) and note

var[s, (-] = 20 =02)

We examine the limit

lim —1/2 B T ; 1/2 ’ .
n— o0 %Oén(]. i an) n— o0 n Oén(l _ an)
Note that
F (L — F(0)
n - 1/2 n
lim G212 gy )m = F'(0),
and
i — 1 i _
nlgngoan = nl;rr;oF <\/ﬁ> =F(0)=1/2.
Thus,

1/2 — a,
lim / e

n— 00 %an(l N an)

= —2F'(0)z.

Exercise 10.5. Let X3,..., X, be ii.d. random variables with X; ~ U([f — 1, 6]) under Py, where 6 € R is
an unknown parameter. We consider the following estimators for 6:

S 1 n
17 = L (i g) e 2 = max{Xi o)
i=1

(a) Determine whether the estimators are unbiased.
(b) Compute the variances Varg [Tl(n)] and Varg [Tz(n)].
(¢) Compute the mean squared error

MSE[T™] = Eo[(T\™ — 6)?], i< {1,2}.

Remark: Here, Ey and Vary denote the mean and the variance under probability measure Py.

Solution:

(a) Fix 0 e R. As X; ~U([0 — 1,0]), we have
(n) § Eo| 1 E,[X 1_ 1.1
< olX > ; B4 5 =0-5+5=6

So, T\™ is unbiased.
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Define Y := X; — (6 — 1) so that Y; ~ U([0,1]) under Py. We further define
Y™ = max{Y{,..., Y} =T — (6 -1).

The distribution function and the density of Yg(n) are respectively (see Exercise 10.2)

0 ifa<O,
FYe(n) (CL) =<a" ifac [07 1], and fye(n) (a) = na”fll{aew’l]}. (2)
1 ifa>1,
Hence,
o] 1
Eo[v;™] = /_Oo afyg(m(a)da = n/o a"da = p—
and so 1
(n) (
Eo[T5"] = Bo[Yy™] + (6 — 1) = 6 — —-
Thus, 74" is not unbiased.
(b) We have
my 1 < L1 1
Varg[T}"] = e ;Varg[Xl] = £Var9[X1] = Ton"
Now, using (2), we compute
! n
Eg[(Ye("))z] = n/o a"tda = iy O

2
Varg[T3"] = Varg[¥;"™] = B[(¥;")’] — (Bo[Vy )’ = — ~ (nZ 1) RCESECE

(c¢) Finally, we can compute
1
MSE,[Ty"] = Varg [T\ + (Eo[T{"] — 0)* = Varg[1{"] = .
n 1 2

MSEA(T3"] = Varol 03]+ (lT3") =00 = Gty * G i G DD

Exercise 10.6. We model the water level above the critical flood mark (140 cm above normal) in Lake Zurich.
Let X denote the water height (in cm) above the critical mark. We use a generalized Pareto distribution:

1 —(1+3)
1+zx o) forx >0
fx(z;0) = o ) ’
0 for z <0,
where 6 > 0 is an unknown parameter to be estimated based on observations x1,...,x,. These are modeled
as realizations of i.i.d. random variables X7, ..., X, with density fx(x;6). We define the estimator by

1 n
T = =3 " og(1 + X;).
> log(1+X))

=1
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(a) Compute the expectation and variance of T under Py for each 6 > 0.

Hint: Define Y; :=log(1 + X;). Then Y; ~ Exp(1/6), i.e., the density of Y; is fy,(y) = %e‘y/gl{yzo}.
(b) Is 7™ an unbiased estimator for 6?7
(c) Compute the mean squared error MSEy[T(™)].

(d) Find the maximum likelihood estimator for 6.

Solution:

(a) Linearity of expectation gives

1 n
Eo[T™] =FEp | = log(l + X;
1)~ [ 13 st 4.3y

=1

- % > " Eollog(1 + X;)] = Egllog(1 + X1)].

By the hint, Y7 :=log(1 + X;) ~ Exp(1/6). Therefore,
Eg[Y1] =0, and Varg[Y;] = 6>

We thus conclude
Eo[T™] = Ey[Y3] = 6.

Similarly, we can compute thanks to independence

1 n
== Z Varg[log(1 + X;)]

i=1

1 n
23 log(1 + X,
= log(1+X;)

i=1

1 1
—Varg[log(1 + X1)] = —62.
n n

Varg[T™] = Varg

(b) From (a), we know that E¢[T(™)] = 6, so T(™) is an unbiased estimator of 6.
(c) Since the estimator is unbiased (see part b), the mean squared error simplifies to:

2
MSE[T™)] = Vary[T™] = %.

(d) The likelihood function is

n 1 n
L($17~-~,$n;9):HfX(f% = ?U (14 2;) —(+5 )1{ 120,05 >0}+

Thus, the log-likelihood function is

n

1 1
log L(z1,...,z,;0) = log (6" H(l + mi)(He)) 1(z,>0,....0,>0}
i=1

1 n
= ( — nlog9 — (1 —+ 5) Zlog(l + I‘l)) 1{®120>~-7$n20}'
i=1

10
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Differentiating with respect to 6 gives

0 n 1«
20 log L(x1,...,x,;60) :—g—i-ﬁ;log(l—&—xi), 1 >0,...,2, > 0.

We further have

n 1 ¢
—2 92210g1+x1)f0<:>n0—zllog1+x1 @H:ﬁZIOg(l—l—xi).

Thus, the point
1 n
=— Zlog(l + ;)
n-
i=1
is a unique stationary point.
We compute the second derivative:

0? 2 &
wlogL(ml,...,mn;G) = ;1—2— 0—3210g(1+xi), 1 >0,...,2, > 0.
i=1

Plugging in 6*, we verify

3

2

262

log L(x1,...,2,;0%) =

A
T

3

Qb‘,_.
/

Q;‘H
A

< 0.
This confirms that 6* is a maximum of the log-likelihood function.

We conclude that the maximum likelihood estimator for 6 is

1 n
Ty ==Y log(l+X;) =T,
ML n 2 og(l+ X;)

11



