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Probability and Statistics
Exercise sheet 1 - Solutions

MC 1.1. Let A, B ⊆ Ω. Which of the following does not hold? (Exactly one answer is correct.)

(a) (A \ B)c = B ∪ Ac.

(b) (A ∪ B)c = Ac ∩ Bc.

(c) A \ Bc = A ∩ B.

(d) (A ∪ B)c = Ac ∪ Bc.

Solution: (d) doesn’t hold. Let ω ∈ B \ A = B ∩ Ac. Then we have ω ∈ Ac and so ω ∈ Ac ∪ Bc. We
also have ω ∈ B and so it holds ω ∈ A ∪ B, which gives ω /∈ (A ∪ B)c.

Graphically, we have

.

MC 1.2. Let Ω := {ω1, ω2, ω3}. Which of the following does not define a σ-algebra on Ω? (Exactly one
answer is correct.)

(a) F1 :=
{

∅, Ω
}

.

(b) F2 :=
{

∅, {ω1}, {ω2, ω3}, Ω
}

.

(c) F3 :=
{

{ω1}, {ω2}, {ω3}
}

.

(d) F4 :=
{

∅, {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, Ω
}

.

Solution: F3 is not a σ-algebra. For instance, we have {ω1} ∈ F3, but {ω1}c = {ω2, ω3} /∈ F3.

MC 1.3. Let Ω := {0, 1}, and F := 2Ω. Which of the following define a probability measure on Ω? (The
number of correct answers is between 0 and 4.)

(a) P[∅] = P[{0}] = P[{1}] = P[{0, 1}] = 1
4 .

1



Probability and Statistics (D-INFK)
Lecturer: Prof. Dr. Dylan Possamaï Coordinator: Daniel Kršek

(b) P[∅] = P[{0}] = P[{1}] = 0 and P[{0, 1}] = 1.

(c) P[∅] = 0,P[{0}] = P[{1}] = 1
2 , and P[{0, 1}] = 1.

(d) P[∅] = 0,P[{0}] = 1
4 ,P[{1}] = 1

2 , and P[{0, 1}] = 3
4 .

Solution:
(a) is not a probability measure. For instance, every probability measure must satisfy P[∅] = 0.
(b) is not a probability measure. For instance, every probability measure must satisfy P[{0, 1}] =
P[{0} ∪ {1}] = P[{0}] + P[{1}].
(c) is a probability measure.
(d) is not a probability measure. For example, every probability measure must satisfy P[Ω] =
P[{0, 1}] = 1.

Exercise 1.4. [Settlers of Catan] We are playing the board game Settlers of Catan. The game board
consists of landscapes that are labeled with integers between 2 and 6 or between 8 and 12. In each round,
two dice are rolled and those landscapes whose number matches the sum of the dice rolls yield resources.

(a) Define the sample space Ω := {(w1, w2) | w1, w2 ∈ {1, 2, 3, 4, 5, 6}}. Identify the event {the landscapes
with number 9 yield resources} as a subset of Ω.

(b) Which landscapes (i.e., which numbers) are expected to yield resources most frequently and least
frequently? Why?

(c) A player has a choice: Either they receive future resources from a landscape with number 8 or from
both landscapes with number 4 and 12. What should they choose and why? (We assume that the type
of resource does not influence the decision.)

Solution:

(a) The desired subset is
Ω9 =

{
(3, 6), (4, 5), (5, 4), (6, 3)

}
.

(b) We proceed as follows: The probability space consists of 36 elements. These can be grouped by
the sum of the dice rolls into 11 sets (Ω2, Ω3, . . . , Ω12), where the indices correspond to the sum
of the dice. By counting the elements in each Ωi, we find

|Ω2| = 1, |Ω3| = 2, . . . , |Ω7| = 6, |Ω8| = 5, . . . , |Ω12| = 1.

The more elements a set has, the more frequently the corresponding number will appear as a
sum of dice rolls. Using the Laplace model, we can explicitly compute the probabilities:

P[Ω2] = 1/36,P[Ω3] = 2/36, . . . ,P[Ω7] = 6/36,P[Ω8] = 5/36, . . . ,P[Ω12] = 1/36.

The answer is thus: The most productive landscapes are the ones with number 6 and 8, while
the least productive ones are the ones with number 2 and 12. Note that there are no landscapes
with number 7.

2



Probability and Statistics (D-INFK)
Lecturer: Prof. Dr. Dylan Possamaï Coordinator: Daniel Kršek

(c) Using part (b), we know that |Ω8| = 5, |Ω4| = 3, and |Ω12| = 1. This allows us to compute the
following probabilities: P[Ω8] = 5/36, and since Ω4 and Ω12 are disjoint, we obtain P[Ω4 ∪Ω12] =
P[Ω4] + P[Ω12] = 4/36. Since the probability of obtaining resources is higher in the first option,
the player should choose this option.

Exercise 1.5. [Biased coins] We assume that we have two biased coins, gold and silver, in an urn. The
probability that the gold coin lands on heads is pg ∈ (0, 1), and for silver, it is ps ∈ (0, 1). In each trial, a
coin is drawn from the urn, tossed, and then returned to the urn. We conduct the random experiment twice.

(a) Specify an appropriate probability space (Ω, F ,P). (We assume that the gold and silver coin are each
drawn with probability 1/2.)

(b) Which element of F corresponds to the event A = {The first coin drawn is silver}.

(c) Which element of F corresponds to the event B = {Heads is obtained twice}.

(d) Compute P[A], P[B], and P[A ∩ B].

Solution:

(a) First, we define a sample space that includes all possible outcomes. Each time the experiment
is conducted, the drawn coin can be gold (g) or silver (s), and the toss can result in heads
(H) or tails (T ). Thus, the outcome of a single trial can be represented as an element of
{(g, H), (g, T ), (s, H), (s, T )}. Since the experiment is conducted twice, the sample space is:

Ω = {(g, H), (g, T ), (s, H), (s, T )}2.

The elements of Ω take the form ω = ((m1, x1), (m2, x2)), where m1, m2 ∈ {g, s} and x1, x2 ∈
{H, T}. For instance, ((g, H), (s, H)) ∈ Ω represents the outcome where the first coin is gold
and lands on heads, and the second coin is silver and lands on heads.
We choose the power set of Ω as the σ-algebra, so F = 2Ω. In particular, for all ω ∈ Ω, the
event {ω occurs} is in F , meaning {ω} ∈ F .
Next, we define an appropriate probability measure P in two steps. First, for each outcome
ω =

(
(m1, x1), (m2, x2)

)
∈ Ω, we define:

P
[
{((m1, x1), (m2, x2))}

]
=


1
4 pm1pm2 if x1 = x2 = H,
1
4 (1 − pm1)pm2 if x1 = T, x2 = H,
1
4 pm1(1 − pm2) if x1 = H, x2 = T,
1
4 (1 − pm1)(1 − pm2) if x1 = x2 = T.

For example, the event {The first coin is gold and lands on heads, and the second coin is silver
and lands on heads} has probability 1

4 × pg × ps. The factor 1
4 = 1

2 × 1
2 arises because the first

coin is gold with probability 1
2 and the second coin is silver with probability 1

2 . In the second
step, for any event A ∈ F , we define:

P[A] =
∑
ω∈A

P[{ω}].

3



Probability and Statistics (D-INFK)
Lecturer: Prof. Dr. Dylan Possamaï Coordinator: Daniel Kršek

Since Ω is finite, it is easy to verify that the mapping P : F −→ [0, 1] is indeed a probability
measure on (Ω, F), particularly satisfying:

P[Ω] =
∑
ω∈Ω

P[{ω}] = 1.

(b) The event {The first drawn coin is silver} corresponds to:

A =
{

((m1, x1), (m2, x2)) ∈ Ω : m1 = s
}

=
{

((s, H), (g, H)), ((s, H), (g, T )), ((s, H), (s, H)), ((s, H), (s, T )),
((s, T ), (g, H)), ((s, T ), (g, T )), ((s, T ), (s, H)), ((s, T ), (s, T ))

}
∈ F .

(c) The event {Heads is obtained twice} corresponds to:

B =
{

((m1, x1), (m2, x2)) ∈ Ω : x1 = x2 = H
}

=
{

((g, H), (g, H)), ((g, H), (s, H)), ((s, H), (g, H)), ((s, H), (s, H))
}

∈ F .

(d) We compute:

P[A] =
∑
ω∈A

P[{ω}] =
∑

m2∈{g,s};x1,x2∈{H,T }

P
[
{((s, x1), (m2, x2))}

]
=

∑
x1,x2∈{H,T }

P
[
{((s, x1), (g, x2))}

]
+

∑
x1,x2∈{H,T }

P
[
{((s, x1), (s, x2))}

]
= 1

4
(
ps × pg + (1 − ps) × pg + ps × (1 − pg) + (1 − ps) × (1 − pg)

)︸ ︷︷ ︸
=1

+ 1
4

(
ps × ps + (1 − ps) × ps + ps × (1 − ps) + (1 − ps) × (1 − ps)

)︸ ︷︷ ︸
=1

= 1
2 ,

and

P[B] =
∑
ω∈B

P[{ω}] =
∑

m1,m2∈{g,s}

P
[
{((m1, H), (m2, H))}

]︸ ︷︷ ︸
= 1

4 ×pm1 ×pm2

= 1
4 ×

(
(pg)2 + 2 × ps × pg + (ps)2)

= (pg + ps)2

4 .

Furthermore, since A ∩ B =
{

((s, H), (g, H)
)
,
(
(s, H), (s, H))

}
∈ F , we get:

P[A ∩ B] =
∑

ω∈A∩B

P[{ω}] = P
[
{((s, H), (g, H))}

]
+ P

[
{((s, H), (s, H))}

]
= 1

4 × ps × pg + 1
4 × ps × ps = ps × (pg + ps)

4 .
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Exercise 1.6. [Properties of a σ-algebra]

(a) [De Morgan’s Law] Let (Ai)i≥1 be a sequence of arbitrary sets. Show that the following holds:( ∞⋃
i=1

Ai

)c

=
∞⋂

i=1
(Ai)c.

Let F be a σ-algebra on Ω.

(b) Show that ∅ ∈ F .

(c) Let (Ai)i≥1 be a sequence of events, i.e., Ai ∈ F for all i ≥ 1. Show that
∞⋂

i=1
Ai ∈ F .

(d) Let A, B ∈ F . Show that A ∪ B ∈ F .

(e) Let A, B ∈ F . Show that A ∩ B ∈ F .

Solution:
(a) We prove De Morgan’s law by showing both inclusions.

⊆: Let ω ∈ (
⋃∞

i=1 Ai)
c. For all j ∈ N, we clearly have Aj ⊆

⋃∞
i=1 Ai, which implies that for all

j ∈ N,
ω ∈ (Aj)c.

This implies that ω ∈
⋂∞

j=1(Ai)c. Thus, (
⋃∞

i=1 Ai)
c ⊆

⋂∞
j=1(Ai)c.

⊇: Let ω ∈
⋂∞

i=1(Ai)c. This means that for all 1 ≤ j < ∞,

ω ∈ (Aj)c,

or equivalently, ω /∈ Aj . This implies ω /∈
⋃∞

j=1 Aj and thus ω ∈ (
⋃∞

j=1 Aj)c. In other words,⋂∞
j=1(Ai)c ⊆ (

⋃∞
i=1 Ai)

c
.

(b) Since Ω ∈ F , it follows that
∅ = Ωc ∈ F .

(c) Let A1, A2, . . . ∈ F . Then, Ac
1, Ac

2, . . . ∈ F . Thus, it follows that
⋃∞

i=1(Ai)c ∈ F . By De
Morgan’s law, we obtain:

∞⋂
i=1

Ai =
( ∞⋃

i=1
(Ai)c

)c

∈ F .

(d) Let A, B ∈ F . We define A1 := A, A2 := B, and for all i ≥ 3, Ai := ∅ ∈ F . Then, we obtain:

A ∪ B =
∞⋃

i=1
Ai ∈ F .

(e) Let A, B ∈ F , so that Ac, Bc ∈ F . From (d), we now obtain Ac ∪ Bc ∈ F . It follows that:

A ∩ B = (Ac ∪ Bc)c ∈ F ,

where we have applied De Morgan’s law for two sets.
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Exercise 1.7. [Properties of a probability measure] Let (Ω, F ,P) be a probability space.

(a) Show that P[∅] = 0.

(b) Let k ≥ 1, and let A1, . . . , Ak be k pairwise disjoint events. Show that

P[A1 ∪ · · · ∪ Ak] = P[A1] + · · · + P[Ak].

(c) Let A be an event. Show that P[Ac] = 1 − P[A].

(d) Let A and B be two arbitrary events (not necessarily disjoint). Show that the addition rule

P[A ∪ B] = P[A] + P[B] − P[A ∩ B]

holds.

Solution:

(a) Define x = P[∅]. We already know that x ∈ [0, 1], since x is the probability of an event. Now,
we define A1 = A2 = · · · = ∅ and thus obtain

∅ =
∞⋃

i=1
Ai.

Since the events Ai are disjoint, countable additivity implies that
∞∑

i=1
P [Ai] = P[∅].

Since P[Ai] = x for every i and P [∅] ≤ 1, we obtain
∞∑

i=1
x ≤ 1,

and therefore x = 0.

(b) Define Ak+1 = Ak+2 = · · · = ∅. In this way, we have

A1 ∪ · · · ∪ Ak = A1 ∪ · · · ∪ Ak ∪ ∅ ∪ ∅ ∪ · · · =
∞⋃

i=1
Ai.

Since the events Ai are pairwise disjoint, we apply countable additivity as follows:

P[A1 ∪ · · · ∪ Ak] = P
[ ∞⋃

i=1
Ai

]

=
∞∑

i=1
P[Ai]

= P[A1] + · · · + P[Ak] +
∑
i>k

P[Ai]︸ ︷︷ ︸
=0︸ ︷︷ ︸

=0

.
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(c) By the definition of the complement, we have Ω = A ∪ Ac, and thus

1 = P[Ω] = P[A ∪ Ac].

Since the two events A, Ac are disjoint, part (b) implies that

1 = P[A] + P[Ac].

(d) A ∪ B is the disjoint union of A and B \ A. Using part (b), we get

P[A ∪ B] = P[A] + P[B \ A]. (1)

Since B = (B ∩A)∪ (B ∩Ac) = (B ∩A)∪ (B \A), where B ∩A and B \A are disjoint, we obtain

P[B] = P[B ∩ A] + P[B \ A],

which implies that P[B \ A] = P[B] − P[A ∩ B]. Substituting this into equation (1), we obtain
the result.
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