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Probability and Statistics
Exercise sheet 3 - Solutions

MC 3.1. Let (Ω, F ,P) be a probability space and let A, B, and C be events with P[A∩B] > 0 and P[C] > 0.
We assume that P[A|B] > P[A] and P[A|C] > P[A]. Which of the following holds? (Exactly one answer is
correct.)

(a) P[A|B ∩ C] > P[A].

(b) P[B] = P[C].

(c) P[B|A] > P[B].

(d) None of the above.

Solution: Answer (c) is correct. Since P[A ∩ B] > 0, we have P[A] > 0 and P[B] > 0, so

P[A ∩ B] = P[A|B]P[B] = P[B|A]P[A].

Then
P[A|B] > P[A] =⇒ P[B|A] = P[A ∩ B]

P[A] = P[A|B]P[B]
P[A] >

P[A]P[B]
P[A] = P[B].

None of the other options hold in general.

MC 3.2. Let Ω = {ω1, ω2, ω3} and F = {∅, Ω, {ω1, ω2}, {ω3}}. Which of the following define random
variables on (Ω, F)? (The number of correct answers is between 0 and 4.)

(a) X1(ω1) = 1, X1(ω2) = 2, X1(ω3) = 3.

(b) X2(ω1) = 1, X2(ω2) = 1, X2(ω3) = 2.

(c) X3(ω1) = 1, X3(ω2) = 2, X3(ω3) = 2.

(d) X4(ω1) = 1, X4(ω2) = 1, X4(ω3) = 1.

Solution: First, we note that in this specific situation, where Xi, i ∈ {1, . . . , 4}, takes values in
{1, 2, 3}, we have

X−1
i ((−∞, a]) =


∅, a < 1,

X−1
i ({1}), a ∈ [1, 2),

X−1
i ({1}) ∪ X−1

i ({2}), a ∈ [2, 3),
X−1

i ({1}) ∪ X−1
i ({2}) ∪ X−1

i ({3}), a ≥ 3.
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Thus, it suffices to verify measurability of the sets X−1
i ({1}), X−1

i ({2}), and X−1
i ({3}).

(a) We have X−1
1 ({1}) = {ω1} /∈ F , and so X1 is not a random variable.

(b) We have X−1
2 ({1}) = {ω1, ω2} ∈ F , X−1

2 ({2}) = {ω3} ∈ F and X−1
2 ({3}) = ∅ ∈ F , and so X2

is a random variable.

(c) We have X−1
3 ({1}) = {ω1} /∈ F , and so X3 is not a random variable.

(d) We have X−1
4 ({1}) = Ω ∈ F and X−1

4 ({2}) = X−1
4 ({3}) = ∅ ∈ F . and so X4 is a random

variable. In fact, constant functions are always random variables.

MC 3.3. Let (Ω, F ,P) be a probability space and let A, B, and C be events in F . Which of the following
statements are always true? (The number of correct answers is between 0 and 4.)

(a) If A and B as well as A and C are independent, then A and B ∩ C are also independent.

(b) If A and B as well as B and C are independent, then A and C are also independent.

(c) If A, B, and C are independent, then A and B ∩ C are also independent.

(d) If A and A are independent, then P[A] = 1 or P[A] = 0.

Solution:

(a) is not correct. For instance, consider two independent coin flips, and define

A := {The first flip results in tails},

B := {The second flip results in heads}
C := {The two flips have the same result}.

It is easy to verify that this example disproves (a).

(b) is not correct. Take A, B independent and C = A. Then it is clear that (b) is generally false.

(c) is corrrect. We have

P[A ∩ (B ∩ C)] = P[A ∩ B ∩ C] = P[A]P[B]P[C] = P[A]P[B ∩ C].

(d) is correct. We have that P[A] = P[A ∩ A] = P[A]P[A] = (P[A])2 holds only if P[A] = 1 or
P[A] = 0.

MC 3.4. Let X and Y be two random variables taking values in {1, . . . , 6} and representing two independent
rolls of a die. Which of the following pairs of events are independent? (The number of correct answers is
between 0 and 4.)

(a) {X is odd}, {X + Y is even}.

(b)
{

X ∈ {1, 3}
}

, {X + Y = 5}.
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(c) {X = 1}, {X + Y = 4}.

(d) {X = 1}, {X + Y = 13}.

Solution: (a) and (d) are correct. We have

P[X is odd] = 1
2 ,

P[X + Y is even] = P[X is even|Y is even]P[Y is even]
+ P[X is odd|Y is odd]P[Y is odd]

= P[X is even]P[Y is even]
+ P[X is odd]P[Y is odd]

= 1
2 × 1

2 + 1
2 × 1

2
= 1

2 ,

P[X is odd, X + Y is even] = P[X is odd, Y is odd]
= P[X is odd]P[Y is odd]

= 1
4 .

Thus, we see that

P[X is odd, X + Y is even] = 1
4 = 1

2 × 1
2 = P[X is odd]P[X + Y is even].

The last option is trivially true because

P[X = 1, X + Y = 13] = 0 = P[X = 1]P[X + Y = 13].

Using similar calculations, one can verify that the other options are incorrect.

Exercise 3.5. Let X be a random variable with the distribution function

F (a) =



0, a < 0,
a
2 , 0 ≤ a < 1,
2
3 , 1 ≤ a < 2,
a+1

4 , 2 ≤ a < 3,

1, 3 ≤ a.

(a) Plot this distribution function.

(b) Determine the following probabilities: P[X < 1], P[X = 2], P[X = 3], P[1 < X ≤ 2], P[1 ≤ X < 2] and
P[X ≥ 3/2].
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Solution:

(a) The graph of F is as follows:
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(b) We have:

P[X < 1] = F (1−) = 1/2,

P[X = 2] = F (2) − F (2−) = 3/4 − 2/3 = 1/12,

P[X = 3] = 0 (since F is continuous at 3),
P[1 < X ≤ 2] = F (2) − F (1) = 3/4 − 2/3 = 1/12,

P[1 ≤ X < 2] = F (2−) − F (1−) = 2/3 − 1/2 = 1/6,

P[X ≥ 3/2] = 1 − F (1.5−) = 1 − 2/3 = 1/3.

Exercise 3.6. [Riemann zeta function] Let X be a discrete random variable with values in N =
{1, 2, 3, . . .}. The distribution of X is given by

P[X = n] = n−s

ζ(s) , n ∈ N,

where s > 1 is a parameter of the distribution, and ζ(s) =
∑∞

n=1 n−s denotes the Riemann zeta function.
For a number m ∈ N, we define the event Em as {X is divisible by m without remainder}, or equivalently,
{There exists a k ∈ N such that X = km}.

(a) Show that P[Em] = m−s for all m ∈ N.

(b) Let p and q be two distinct prime numbers. Show that Ep and Eq are independent.
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Hint: A number n is divisible by two different prime numbers p and q if and only if n is divisible by
pq.

(c) Determine P
[ ⋂

p prime
Ec

p

]
.

Solution:

(a) Let m ∈ N. Then we have

P[Em] = P

[ ∞⋃
k=1

{X = km}

]
disjoint=

∞∑
k=1

P[X = km] =
∞∑

k=1

(km)−s

ζ(s)

= m−s ×
∑∞

k=1 k−s

ζ(s) = m−s × ζ(s)
ζ(s) = m−s.

(b) According to the hint, we have Ep ∩ Eq = Epq, and thus

P[Ep ∩ Eq] = P[Epq] = (pq)−s = p−sq−s = P[Ep]P[Eq].

Hence, Ep and Eq are independent.

(c) We consider the prime factorization of X. The event
⋂

p prime
Ec

p corresponds to the situation

when no prime number appears in the prime factorization of X, i.e., X must be 1. Thus, we
obtain

P

[ ⋂
p prime

Ec
p

]
= P[X = 1] = 1

ζ(s) .

Exercise 3.7. [First six] Two players, Anja and Beatrice, take turns rolling a (fair) die until a six appears.
Anja starts rolling. The player who rolls the first six wins the game. Determine the probabilities of winning
for both players.

Solution: Let A be the event that Anja wins, and B be the event that Beatrice wins. First, note
that

P[The game never ends] = 1 −
∞∑

i=1
P[The game ends after exactly i rolls]

= 1 −
∞∑

i=1

(5
6

)i−1
× 1

6

= 1 − 1
6 ×

∞∑
i=1

(5
6

)i−1

= 1 − 1
6 × 6

= 0.

5



Probability and Statistics (D-INFK)
Lecturer: Prof. Dr. Dylan Possamaï Coordinator: Daniel Kršek

Thus, since one of them must win, but they cannot both win simultaneously, we have

P[A] + P[B] = 1. (1)

Let W be the number of the roll in which the first six appears. W follows a geometric distribution
with parameter 1/6. If W is odd, Anja wins; otherwise, Beatrice wins. Thus, we obtain

P[A] =
∞∑

n=0
P[W = 2n + 1] =

∞∑
n=0

(
5
6

)2n

× 1
6

= 1
6

∞∑
n=0

((
5
6

)2
)n

= 1
6 × 1

1 − (5/6)2 = 6
11

and consequently, P[B] = 1 − P[A] = 5/11.

Exercise 3.8. [Construction of random variables] The goal of this problem is to construct random
variables from a sequence of independent coin flips. Let (Ω, F ,P) be a probability space, and let (Xi)i≥1 be
an infinite sequence of independent, Bernoulli(1/2)-distributed random variables. We consider the following
algorithm:

i := 1
while (Xi = Xi+1 = 1) :

i := i + 2
Z := Xi + 2 × Xi+1

return Z

(a) Show that the algorithm always terminates after a finite number of steps with probability 1.

(b) Show that Z is a uniformly distributed random variable in {0, 1, 2}.

(c) [Bonus] Provide an algorithm that outputs a Bernoulli(1/5)-distributed random variable.

Solution:

(a) To show that the algorithm terminates after a finite number of steps, we need to prove that the
while loop runs only a finite number of times. We observe that for j ≥ 0,

Aj :={The while loop runs exactly j times}

=
( 2j⋂

i=1
{Xi = 1}

)
∩
(
{X2j+1 = 0} ∪ {X2j+2 = 0}

)
.
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Due to the independence of the random variables (Xi)i≥1, we get

P [Aj ] = P

[ 2j⋂
i=1

{Xi = 1} ∩
(
{X2j+1 = 0} ∪ {X2j+2 = 0}

)]

=
( 2j∏

i=1
P [Xi = 1]

)
× P [{X2j+1 = 0} ∪ {X2j+2 = 0}]︸ ︷︷ ︸

=1−P[{X2j+1=1}∩{X2j+2=1}]=1− 1
4 = 3

4

= 3
4 ×

(
1
2

)2j

.

Summing over all cases where the algorithm terminates, i.e., over the disjoint events (Aj)j≥1,
we obtain

P[Algorithm terminates] =
∞∑

j=0
P [Aj ] =

∞∑
j=0

3
4 ×

(
1
2

)2j

= 3
4 ×

∞∑
j=0

(
1
4

)j

= 3
4 × 1

1 − 1
4

= 1.

(b) From part (a), we know that the event A := {Algorithm terminates} =
⋃∞

j=0 Aj has probability
1 and that the events (Aj)j≥1 are disjoint. Thus, we obtain

P[Z = 0] = P[{Z = 0} ∩ A] + P[{Z = 0} ∩ Ac]︸ ︷︷ ︸
≤P[Ac]=0

=
∞∑

j=0
P[{Z = 0} ∩ Aj ]

=
∞∑

j=0
P

[ 2j⋂
i=1

{Xi = 1} ∩ {X2j+1 = 0} ∩ {X2j+2 = 0}

]

=
∞∑

j=0

(
1
2

)2j+2
= 1

4 ×
∞∑

j=0

(
1
4

)j

= 1
4 × 1

1 − 1
4

= 1
3 ,

where we again use the independence of (Xi)i≥1 and the definition of Z in the algorithm.
Similarly, we obtain

P[Z = 1] = P[Z = 2] = 1
3 ,

so Z is uniformly distributed on {0, 1, 2}.
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(c) Consider the following algorithm:

i := 1
while (Xi = Xi+2 = 1) or (Xi+1 = Xi+2 = 1) :

i := i + 3
Z := Xi + 2 × Xi+1 + 4 × Xi+2

if Z = 4 :
Z ′ := 1

else :
Z ′ := 0

return Z ′

Following similar reasoning as in parts (a) and (b), we can show that the algorithm terminates
with probability 1 and that Z is uniformly distributed on {0, 1, 2, 3, 4}, implying that Z ′ is
Bernoulli(1/5)-distributed.
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