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Probability and Statistics
Exercise sheet 7 - Solutions

MC 7.1. Let Z be a random variable with distribution function:

FZ(z) =



0, if z < 0,

0.1, if 0 ≤ z < 1,

0.5, if 1 ≤ z < 3,

0.8, if 3 ≤ z < 5,

1, if z ≥ 5.

(Exactly one answer is correct in each question.)

1. Is E[Z] ≥ 3?

(a) Yes.
(b) No.

2. Is P[Z ≤ 3] = P[Z ≥ 3]?

(a) Yes.
(b) No.

3. Is P[3.5 ≤ Z ≤ 5.5] = 0.2?

(a) Yes.
(b) No.

4. What is E[Z2]?

(a) E[Z2] = 8.1.
(b) E[Z2] = 3.5.
(c) E[Z2] = 21.
(d) Doesn’t exist.
(e) E[Z2] = ∞.

5. Is P[Z = 0] = 0?

(a) Yes.
(b) No.

Solution:

1. (b). Z is a discrete random variable and the probabilities are: P[Z = 0] = 0.1, P[Z = 1] = 0.4,
P[Z = 3] = 0.3, P[Z = 5] = 0.2. Thus,

E[Z] = 0 × 0.1 + 1 × 0.4 + 3 × 0.3 + 5 × 0.2 = 2.3 < 3.
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2. (b). We have P[Z ≤ 3] = 0.8, but P[Z ≥ 3] = 1 − P[Z < 3] = 1 − 0.5 = 0.5.

3. (a). We have P[3.5 ≤ Z ≤ 5.5] = P[Z = 5] = 0.2.

4. (a). We compute:

E[Z2] = 02 × 0.1 + 12 × 0.4 + 32 × 0.3 + 52 × 0.2 = 0 + 0.4 + 2.7 + 5 = 8.1.

5. (b). P[Z = 0] = 0.1 ̸= 0.

Exercise 7.2. Let r > 1 and define f : R → R by

f(x) =
{

0 for x ≤ 1,

cx−r for x > 1,

for some constant c ∈ R.

(a) Determine the constant c such that f is a density.

(b) Let X be a random variable with density fX = f . Compute the cumulative distribution function of X.

(c) Compute the expected value of X. For which values of r is the expected value finite?

Solution:

(a) To make f a probability density function, we require
∫

f(x)dx = 1 and f ≥ 0. We have∫ ∞

−∞
f(x)dx =

∫ ∞

1
cx−rdx = c

x−r+1

−r + 1

∣∣∣∣∞

x=1
= c

r − 1 .

Thus, c = r − 1. Checking that f(x) ≥ 0, x ∈ R, is satisfied for c = r − 1 is straightforward.

(b) The cumulative distribution function FX is:

FX(t) =
∫ t

−∞
fX(x)dx, t ∈ R.

For t ≤ 1, we have FX(t) = 0 (since fX(x) = 0 on (−∞, 1]). For t > 1:

FX(t) =
∫ t

−∞
fX(x)dx =

∫ t

1
(r − 1)x−rdx = (r − 1) x−r+1

−r + 1

∣∣∣∣t

x=1
= 1 − t−r+1.

So the cumulative distribution function is:

FX(t) =
{

0 for t ≤ 1,

1 − t−r+1 for t > 1.
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(c) Since P[X ≥ 1] = 1, the expectation is defined. For r ̸= 2:

E[X] =
∫ ∞

−∞
x · fX(x)dx =

∫ ∞

1
x · (r − 1)x−rdx =

∫ ∞

1
(r − 1)x−r+1dx

= (r − 1) x−r+2

−r + 2

∣∣∣∣∞

x=1
=

{
r−1
r−2 , if r > 2,

∞, if 1 < r < 2.

For r = 2, we compute:

E[X] =
∫ ∞

−∞
x · fX(x)dx =

∫ ∞

1
x · x−2dx =

∫ ∞

1
x−1dx = ∞.

Therefore, the expected value is finite if and only if r > 2.

Exercise 7.3. k ∈ N hunters each shoot once simultaneously at a flock of m ∈ N ducks. They independently
choose which duck to aim at, and they hit their chosen duck independently of each other and independently
of the duck selected, with probability p ∈ (0, 1).

Introduce for each duck n ∈ {1, . . . , m} a random variable Xn indicating whether the duck was hit (by at
least one hunter) or not. We define {Xn = 1} = “n-th duck not hit” and {Xn = 0} = “n-th duck hit”.

(a) What is the distribution of Xn for n = 1, . . . , m?

(b) What is the expected number of unharmed ducks?

(c) Are the events {Xn = 0}, n ∈ {1, . . . , m} independent? Consider only the case k < m for simplicity.

Solution:

(a) Xn can take only values in {0, 1}. The probability that the n-th duck is not hit by the ℓ-th
hunter is 1 − p/m. Since the hunters shoot independently, the probability that the n-th duck,
and thus any duck, is unharmed is

P[Xn = 1] =
(

1 − p

m

)k

.

Hence, all Xn follow a binomial distribution with parameters ñ = 1 and p̃ = (1 − p/m)k, i.e., a
Bernoulli distribution with parameter p̃.

(b) The total number X of unharmed ducks is X = X1 + X2 + · · · + Xm. Due to the linearity of
expectation,

E[X] = E[X1] + E[X2] + · · · + E[Xm].

Since the Xn are Bernoulli variables, we have E[Xn] = P[Xn = 1] = (1 − p/m)k for all n ∈
{1, . . . , m}, and thus

E[X] = m
(

1 − p

m

)k

.

(c) We consider only the case k < m, i.e., fewer hunters than ducks. Then X1, . . . , Xm are not
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independent because

P[X1 = · · · = Xm = 0] = 0 <
(

1 −
(

1 − p

m

)k)m

=
m∏

n=1
P[Xn = 0].

Remark: The random variables X1, . . . , Xm are also not independent if k ≥ m and m > 1. In
particular, X is not binomially distributed.

Exercise 7.4. We consider a circle which has a random radius R. The radius R is exponentially distributed
with expectation 1/λ for some λ > 0. Let us denote by A the (random) area of this circle. Determine:

(a) The distribution function and the density function of A;

(b) The expected value of A.

Solution:

(a) Let X be exponentially distributed with parameter µ, i.e., the density of X is fX(x) = µe−µx

for x ≥ 0, and 0 otherwise. By integration by parts, we have:

E[X] =
∫ ∞

0
xµe−µxdx = −xe−µx

∣∣∣∞

x=0
−

∫ ∞

0
(−e−µx)dx

= 0 + 1
µ

∫ ∞

0
µe−µxdx = 1

µ

∫ ∞

−∞
fX(x)dx = 1

µ
· 1 = 1

µ
.

Thus, since R has expectation 1/λ, we conclude that R is exponentially distributed with param-
eter µ = λ.

The area of the circle with radius R is given by the random variable A = πR2. The distribution
function of A is:

FA(x) = P[A ≤ x] = P[πR2 ≤ x] = P
[
R ≤

√
x/π

]
= FR

(√
x/π

)
=

∫ √
x/π

−∞
fX(t)dt

=
∫ √

x/π

0
λe−λtdt = −e−λt

∣∣∣√x/π

t=0
= 1 − e−λ

√
x/π, for x ≥ 0,

and 0 otherwise.
The density function is then given by:

fA(x) = d
dx

FA(x) = λ

2
√

πx
e−λ

√
x/π, for x ≥ 0,

and 0 otherwise.
Alternatively, since FA(x) = FR

(√
x/π

)
, applying the chain rule yields:

fA(x) = d
dx

FA(x) = d
dx

FR

(√
x/π

)
= fR

(√
x/π

) d
dx

√
x

π
= 1

2
√

xπ
λe−λ

√
x/π for x ≥ 0,
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and 0 otherwise.
Alternatively, we may use substitution as in the sample solution to Exercise 7.5.(c) to obtain
the density.

(b) Using integration by parts as in (a):

E[A] = E[πR2] =
∫ ∞

0
πt2fR(t)dt = πλ

∫ ∞

0
t2e−λtdt

= πλ

(
t2 e−λt

−λ

∣∣∣∣∞

t=0
−

∫ ∞

0
2t

e−λt

−λ
dt

)
= 2π

∫ ∞

0
te−λtdt = 2π

λ2 .

Remark: Of course, it is also possible to determine the expected value using the density fA

from part (a).

Exercise 7.5. A random variable X has the density function:

f(x) =


c

(1 + x)5 , x > 0,

0, x ≤ 0.

(a) Find the value of c and the distribution function of X.

(b) Find E[X] and E[X2].

Hint: It might be easier to first compute E[1 + X] and E[(1 + X)2] and then use linearity.

(c) What are the distribution function and the density of Y := eX?

Solution:
(a) We require that

∫ ∞
−∞ f(x)dx = 1 and f ≥ 0. We compute:∫ ∞

−∞
f(x)dx =

∫ ∞

0

c

(1 + x)5 dx = c
(

− 1
4(1 + x)−4

)∣∣∣∞

x=0
= c

4

yielding c = 4. Checking f ≥ 0 for c = 4 is straightforward.

The distribution function is:

FX(x) = P[X ≤ x] =
∫ x

−∞
f(y)dy =

∫ x

0

4
(1 + y)5 dy = −(1 + y)−4∣∣x

y=0 = 1 − 1
(1 + x)4 , for x ≥ 0,

and 0 otherwise.

(b) We first compute:

E[1 + X] =
∫ ∞

0
(1 + x) · 4

(1 + x)5 dx =
∫ ∞

0

4
(1 + x)4 dx = 4

(
− 1

3(1 + x)−3
)∣∣∣∣∞

x=0
= 4

3 ,

E[(1 + X)2] =
∫ ∞

0

4
(1 + x)3 dx = 4

(
− 1

2(1 + x)−2
)∣∣∣∣∞

x=0
= 2.
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Thus,

E[X] = E[1 + X − 1] = E[1 + X] − 1 = 1
3 ,

E[X2] = E[(1 + X)2 − 2X − 1] = E[(1 + X)2] − 2E[X] − 1 = 2 − 2
3 − 1 = 1

3 .

(c) Since X ≥ 0, it follows that Y = eX ≥ 1. For y < 1, the distribution function FY of Y thus
satisfies:

FY (y) = P[Y ≤ y] = P[eX ≤ y] ≤ P[eX < 1] = P[X < 0] = 0.

For y ≥ 1, we get:

FY (y) = P[eX ≤ y] = P[X ≤ log y] = FX(log y) = 1 − 1
(1 + log y)4 .

By differentiating the distribution function, we get the density fY of Y :

fY (y) = d
dy

FY (y) =
{

0 for y < 1,
4

y(1+log y)5 for y ≥ 1.

Alternatively, we have for y > 1 that

FY (y) = P[eX ≤ y] = P[X ≤ log y] =
∫ log(y)

0

4
(1 + x)5 dx =

∫ y

1

4
t(1 + log t)5 dt =

∫ y

−∞
fY (t)dt,

where we have used the substitution t = ex in the second-to-last equality. We thus obtain the
same result as above.
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