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ETH Zürich Lecture Notes (Translated)

V. Tassion (based on a previous version from M. Schweizer)

D-INFK Spring 2022 (Updated: May 24, 2022)

Introduction and Basic Ideas

Basic Ideas: One has observed data and wishes to draw inferences about the underlying

mechanism generating these data.

A common first step is to present the data graphically. This is often useful to form an

initial impression and to generate ideas. (Such methods belong to descriptive statistics,

which are not treated here.)

We focus on inductive statistics in the following. The basic idea is simple: The data

x1, x2, . . . , xn

are viewed as realisations of random variables

X1, X2, . . . , Xn,

and (under suitable assumptions) one seeks statements about the distribution ofX1, . . . , Xn.

Important: Always clearly distinguish between the data

x1, . . . , xn (lowercase, usually numbers)

and the generating mechanism

X1, . . . , Xn (uppercase, i.e., random variables on Ω).

As William James (1842–1910) remarked, “We must be careful not to confuse data with

the abstractions we use to analyze them.”

The collection of observations (or random variables) is called a sample, and the number

n is the sample size.

A typical analysis proceeds by finding a suitable model for the data. The model is

described by a (possibly high-dimensional) parameter θ ∈ Θ, and to use the concepts and

1



notation precisely, one must specify exactly how probability-theoretic statements depend

on θ. Usually, one considers a family of probability spaces; that is, one has a fixed base

space (Ω,F) and for each θ ∈ Θ a probability measure Pθ. One may imagine that ‘nature’

chooses a parameter θ ∈ Θ along with a stochastic mechanism Pθ. As statisticians we do

not know which θ has been chosen; we thus treat the data x1, . . . , xn as outcomes of the

random variables X1, . . . , Xn under the unknown mechanism Pθ, and we attempt to draw

conclusions about θ.

A typical parametric statistical analysis comprises the following steps:

1. Descriptive Statistics: Graphical methods are used to form an initial idea for

choosing an appropriate model. (We do not discuss this step further.)

2. Choice of a (Parametric) Model: Specify the parameter space Θ and the family

(Pθ)θ∈Θ of models.

3. Parameter Estimation: Based on the data, choose the best-fitting model. For

this, an estimator is used—a function mapping the data x1, . . . , xn to a parameter

value θ ∈ Θ.

4. Goodness-of-Fit Testing: Test whether the chosen parameter θ or model Pθ fits

the data well using an appropriate statistical test.

5. Assessing Reliability of the Estimates: Instead of a single parameter value,

one may specify a region in Θ (a confidence interval) such that, with a certain

probability, all the models within that region are in agreement with the data.

1 Basic Concepts of Estimation

We wish to estimate an unknown parameter θ based on a sample

X1, X2, . . . , Xn.

1.1 Definition of an Estimator

Definition 1.1 (Estimator). An estimator is a random variable

T : Ω −→ R

of the form

T = t(X1, X2, . . . , Xn),

where t : Rn −→ R is a measurable function. Inserting the observed data

x1, x2, . . . , xn (with xi = Xi(ω))
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yields the estimate

t(x1, . . . , xn)

for θ.

Remark 1.1. It is essential to distinguish between the estimator (a random variable) and

the estimate (the realised value when data are plugged in).

Example 1.1 (Tea Tasting Lady). An English lady claims that when drinking tea with

milk she can tell by taste whether milk or tea was poured first into the cup. To test her

claim, we ask her over n days to classify two cups (one of type 1 and one of type 2) by

indicating in which cup the milk was poured first. We record the outcomes as

x1, x2, . . . , xn ∈ {0, 1} (with 1 indicating a correct and 0 an incorrect classification).

These data are treated as realisations of the random variables

X1, X2, . . . , Xn.

Let

Sn =
n∑

i=1

Xi,

be the random number of correct classifications, and denote the observed sum by sn. As-

suming the Xi are i.i.d. ∼ Ber(θ) with unknown success probability θ ∈ [0, 1], we have

Sn ∼ Bin(n, θ).

Natural choices for estimators are:

1. Last Observation Estimator: T (1) = Xn.

2. Sample Mean Estimator: T (2) =
1

n

∑n
i=1Xi.

For the observed data, these yield the estimates:

t(1)(x1, . . . , xn) = xn and t(2)(x1, . . . , xn) =
1

n

n∑
i=1

xi.

1.2 Bias and Mean Squared Error

The estimator T is a random variable whose distribution (under Pθ) depends on the

unknown parameter θ.

Definition 1.2 (Unbiased Estimator). An estimator T is called unbiased for θ if, for all

θ ∈ Θ,

Eθ[T ] = θ.
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Definition 1.3 (Bias and MSE). For θ ∈ Θ, the bias of an estimator T is defined as

Biasθ(T ) = Eθ[T ]− θ.

The mean squared error (MSE) of T is defined as

MSEθ(T ) = Eθ

[
(T − θ)2

]
.

In fact,

MSEθ(T ) = Varθ(T ) +
(
Biasθ(T )

)2
.

For an unbiased estimator, the MSE equals the variance.

Example 1.2 (Tea Tasting Lady (Continued)). Both estimators T (1) = Xn and T (2) =
1

n

∑n
i=1Xi are unbiased:

Eθ

[
T (1)

]
= Eθ[Xn] = θ,

and

Eθ

[
T (2)

]
=

1

n

n∑
i=1

Eθ[Xi] = θ.

However, their variances are:

Varθ
[
T (1)

]
= θ(1− θ),

Varθ
[
T (2)

]
=

1

n
θ(1− θ).

Thus, the sample mean T (2) has a smaller variance since it uses the full sample informa-

tion.

♢

1.3 Maximum Likelihood Estimation (MLE)

In this section, we introduce a systematic method for determining estimators. This

method yields results that are both plausible and have good properties.

Assume we know the joint distribution of X1, . . . , Xn under Pθ. For i.i.d. data, the

joint probability (or density) is given by the product of the individual probabilities (or

densities). For a given sample (x1, . . . , xn), the function

L(x1, . . . , xn; θ)

is called the likelihood function for θ.

Definition 1.4 (Likelihood Function). For the observed sample (x1, . . . , xn), the likelihood
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function is defined by

L(x1, . . . , xn; θ) =



n∏
i=1

pXi
(xi; θ), if Xi are discrete,

n∏
i=1

fXi
(xi; θ), if Xi are continuous.

Definition 1.5 (Maximum Likelihood Estimator (MLE)). The maximum likelihood es-

timator of θ is defined as

θ̂ML(x1, . . . , xn) ∈ argmax
θ∈Θ

L(x1, . . . , xn; θ).

In practice, one maximises the log-likelihood function,

ℓ(θ; x1, . . . , xn) = logL(x1, . . . , xn; θ),

and then obtains the estimator by replacing the data with the random variables:

TML = tML(X1, . . . , Xn).

Example 1.3 (Bernoulli Distribution). Let X1, . . . , Xn be i.i.d. ∼ Ber(p) with unknown

p ∈ (0, 1). The probability mass function is

pX(x; p) = px(1− p)1−x, x ∈ {0, 1}.

Hence, the likelihood function is

L(x1, . . . , xn; p) =
n∏

i=1

pxi(1− p)1−xi = p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi .

Taking the logarithm,

ℓ(p; x1, . . . , xn) =

( n∑
i=1

xi

)
log p+

(
n−

n∑
i=1

xi

)
log(1− p).

Differentiating with respect to p:

d

dp
ℓ(p; x1, . . . , xn) =

∑n
i=1 xi

p
− n−

∑n
i=1 xi

1− p
= 0.

Solving, ∑
xi

p
=

n−
∑

xi

1− p
=⇒

n∑
i=1

xi(1− p) =

(
n−

n∑
i=1

xi

)
p.
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Thus,
n∑

i=1

xi = np =⇒ p̂ =
1

n

n∑
i=1

xi.

Therefore, the MLE for p is given by

TML =
1

n

n∑
i=1

Xi.

♢

1.4 Models with Multiple Parameters

Thus far, our discussion has focused on models with a single parameter θ ∈ R. However,
many situations require models with multiple parameters θ1, θ2, . . . , θm, where m ≥ 2. We

now develop a general theory for such cases.

Consider the parameter space

Θ ⊂ Rm,

where m is the number of parameters. The stochastic model is given by a family of

probability measures (Pθ)θ∈Θ, and our goal is to estimate the vector

θ = (θ1, θ2, . . . , θm).

All previous definitions (of estimator, bias, MSE, MLE, etc.) extend naturally to this

setting.

Example 1.4 (Normal Distribution). Let X1, . . . , Xn be i.i.d. ∼ N (µ, σ2). Here, the

unknown parameter is

θ = (µ, σ2),

so that m = 2. We wish to estimate both µ and σ2.

The density function for Xi is

fXi
(x;µ, σ2) =

1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
.

Thus, the likelihood function is:

L(x1, . . . , xn;µ, σ
2) =

n∏
i=1

1√
2πσ2

exp
(
−(xi − µ)2

2σ2

)
.

Taking the logarithm,

logL(x1, . . . , xn;µ, σ
2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2.
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Differentiation with Respect to µ:

Differentiate with respect to µ:

∂

∂µ
logL(x1, . . . , xn;µ, σ

2) =
1

σ2

n∑
i=1

(xi − µ) = 0.

Hence,

µ̂ = x̄n =
1

n

n∑
i=1

xi.

Differentiation with Respect to σ2:

Differentiate with respect to σ2:

∂

∂σ2
logL(x1, . . . , xn;µ, σ

2) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − x̄n)
2 = 0.

Solving for σ2 gives:

σ̂2 =
1

n

n∑
i=1

(xi − x̄n)
2.

By expanding the square, we may also write:

σ̂2 =
1

n

n∑
i=1

x2
i − (x̄n)

2.

Remark 1.2. The maximum likelihood estimator σ̂2 is not unbiased since

E[σ̂2] =
n− 1

n
σ2 < σ2.

A commonly used unbiased estimator for σ2 is

S2 =
1

n− 1

n∑
i=1

(Xi − X̄n)
2.

Furthermore, the estimator

T = (T1, T2)

with

T1 = µ̂ = X̄n and T2 = σ̂2 =
1

n

n∑
i=1

(Xi − X̄n)
2 =

1

n

n∑
i=1

X2
i − (X̄n)

2,

is, in general, also the so-called moment estimator for (E[X], Var[X]) in any model Pθ

where X1, . . . , Xn are i.i.d. However, this estimator has the general drawback that it is
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not unbiased for (E[X], Var[X]). In fact, while

Eθ[T1] = Eθ[Xn] =
1

n

n∑
i=1

Eθ[Xi] = Eθ[X],

we obtain

Eθ[(Xn)
2] =

1

n2

n∑
i,k=1

Eθ[XiXk] =
1

n2

(
n

n∑
i=1

Eθ[X
2
i ] +

∑
i̸=k

Eθ[Xi]Eθ[Xk]

)
,

and, due to independence (for i ̸= k),

Eθ[XiXk] = Eθ[Xi]Eθ[Xk] =
(
Eθ[X]

)2
.

Thus, one can show that

Eθ[T2] =
1

n

n∑
i=1

Eθ[X
2
i ]− Eθ[(Xn)

2] =
n− 1

n
Varθ[X].

To obtain an unbiased estimator for (E[X], Var[X]), one typically uses

T ′
1 = T1 = X̄n, T ′

2 =
n

n− 1
T2 =

1

n− 1

n∑
i=1

(Xi − X̄n)
2.

The estimator T ′
2 is often denoted by S2 and is called the empirical sample variance.

♢

2 Confidence Intervals

2.1 Definition

In the preceding chapter we introduced methods for estimating unknown parameters using

formulas. A natural question is: How reliable are these estimators? For example, suppose

we toss a coin n times without knowing the probability p of heads. If we observe, say,

70 heads, then the maximum likelihood estimator is TML = 0.7. But how far can TML

deviate from the true value of p? To answer such questions, we introduce the concept of

a confidence interval.

Definition 2.1 (Confidence Interval). Let α ∈ [0, 1]. A confidence interval for θ with

confidence level 1− α is a random interval

I = [A,B],
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with endpoints

A = a(X1, . . . , Xn), B = b(X1, . . . , Xn),

where a, b : Rn → R, such that for all θ ∈ Θ

Pθ[A ≤ θ ≤ B] ≥ 1− α.

Remark 2.1. In the definition above, the parameter θ is nonrandom (fixed but unknown),

while the endpoints A and B are random variables (functions of the data).

Example 2.1 (Confidence Interval for a Normal Model with Known Variance). Assume

we have i.i.d. random variables

X1, . . . , Xn ∼ N(m, 1),

i.e. a normal model with known variance σ2 = 1 but with unknown mean m. One may

show that the maximum likelihood estimator is the sample mean

T = X̄n =
1

n

n∑
i=1

Xi.

We now seek a confidence interval for m of the form

I =
[
T − c√

n
, T +

c√
n

]
,

where c > 0 is a constant independent of n. Note that

Pθ

[
T − c√

n
≤ m ≤ T +

c√
n

]
= Pθ

[
−c ≤

√
n(T −m) ≤ c

]
.

Since

Z =
√
n(T −m) ∼ N(0, 1),

it follows that

Pθ[−c ≤ Z ≤ c] = 2Φ(c)− 1.

Consulting the standard normal table shows that 2Φ(1.96) − 1 ≥ 0.95, so by choosing

c = 1.96 we obtain a 95%-confidence interval:

I =
[
T − 1.96√

n
, T +

1.96√
n

]
.

What does this mean exactly?

Imagine that we perform n measurements of a physical quantity. For example, suppose we

wish to determine, at room temperature, the temperature at which water begins to boil.

The characteristics of the thermometer suggest that each measurement can be modeled
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by a normally distributed random variable N(m, 1), where m is the (unknown) boiling

temperature. We perform a series of measurements—say, x1 = 99.2, x2 = 98.7, . . . . After

n = 100 successive trials, we calculate the empirical average

m̂(x) =
x1 + · · ·+ xn

n
= 99.106.

The confidence interval obtained above thus indicates that, assuming the stochastic model

is correct, the true value m lies (with 95% probability) in the interval[
99.106− 0.196, 99.106 + 0.196

]
= [98.910, 99.302].

What are the key points?

In the above example the most important observation is that the random variable

Z =
√
n(T −m)

is normally distributed for every value of the unknown parameter θ.

In general, one may attempt to obtain a confidence interval for a parameter θ by first

determining an estimator T for θ. Next, one seeks to find a random variable of the form

Z = f(T, θ)

whose distribution can be explicitly determined and that does not depend on θ. This

is generally easier when the random variables X1, . . . , Xn are normally distributed since

operations on normally distributed random variables are well understood—for instance,

we have used above that the sum of independent normally distributed random variables

is itself normally distributed.

In the next section we will introduce new distributions that arise from operations on

normally distributed random variables.

2.2 Distribution Statements

In many situations it is useful or necessary to know the distribution of an estimator (or

a function thereof) under Pθ, for every θ ∈ Θ or for certain values of θ. There are only a

few exact general results; for the normal distribution, precise results are available.

Definition 2.2 (Chi-Squared Distribution). A continuous random variable X is said to

be chi-squared distributed with m degrees of freedom if its density is given by

fX(y) =
1

2m/2Γ(m/2)
y

m
2
−1e−y/2, y ≥ 0.

We write

X ∼ χ2
m.
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Here the Gamma function is defined as

Γ(v) =

∫ ∞

0

tv−1e−t dt,

and for n ∈ N, Γ(n) = (n− 1)!.

Remark 2.2. The chi-squared distribution with m degrees of freedom is a special case of

the Gamma(α, λ)-distribution with α = m
2
and λ = 1

2
. For m = 2, it corresponds to an

exponential distribution with parameter 1
2
.

Theorem 2.1 (Sum of Squares Theorem). If X1, X2, . . . , Xm are i.i.d. ∼ N(0, 1), then

Y =
m∑
i=1

X2
i ∼ χ2

m.

Definition 2.3 (t-Distribution). A continuous random variable X is said to be t-distributed

with m degrees of freedom if its density is given by

fX(x) =
Γ
(

m+1
2

)
√
mπ Γ

(
m
2

) (1 + x2

m

)−m+1
2

, x ∈ R.

We write

X ∼ tm.

Remark 2.3. For m = 1 the t-distribution is equivalent to a Cauchy distribution, and as

m → ∞ it converges asymptotically to the standard normal distribution N(0, 1). Like the

N(0, 1) distribution, the t-distribution is symmetric about 0; however, it is heavy-tailed

(i.e. its density decays more slowly to 0 as |x| → ∞), and this effect is more pronounced

the smaller m is.

Theorem 2.2 (Satz 2.6). Let X and Y be independent random variables with

X ∼ N(0, 1) and Y ∼ χ2
m.

Then the quotient

Z :=
X√
Y/m

is t-distributed with m degrees of freedom.

2.3 Normal Model with Unknown Variance and Mean

For normally distributed samples, we have exact distributional statements that we will

also use in hypothesis testing later. Recall the definitions of the sample mean and the
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sample variance:

X̄n =
1

n

n∑
i=1

Xi, S2 =
1

n− 1

n∑
i=1

(Xi − X̄n)
2.

Theorem 2.3. If X1, . . . , Xn are i.i.d. ∼ N(m,σ2), then X̄n and S2 are independent.

Remark 2.4. (Proof: See Rice, Section 6.3.)

Example 2.2 (Ostrich Eggs). Mr. Smith and Dr. Thurston, two Australian researchers,

are debating the average weight of ostrich eggs. They agree that the weights can be ap-

proximately modeled as normally distributed. Mr. Smith claims that the mean weight is

1100 g, while Dr. Thurston contends that it is 1200 g. To settle their dispute, they collect

n = 8 eggs with the following weights (in grams):

1090, 1150, 1170, 1080, 1210, 1230, 1180, 1140.

These data are viewed as realizations of i.i.d. random variables X1, . . . , X8 ∼ N(m,σ2).

The natural estimators for m and σ2 are the sample mean

X̄8 =
1

8

8∑
i=1

Xi,

and the sample variance

S2 =
1

7

8∑
i=1

(Xi − X̄8)
2.

A confidence interval for m is constructed in the form

C(X1, . . . , X8) =
[
X̄8 − t7,1−α/2

S√
8
, X̄8 + t7,1−α/2

S√
8

]
,

where t7,1−α/2 is the (1− α/2)-quantile of the t-distribution with 7 degrees of freedom.

For example, if 1− α = 99%, and the observed values are

x̄8 = 1156.25, s = 52.90, t7,0.995 = 3.499,

the resulting confidence interval for m is approximately

[1090.81, 1221.69].

Thus, both the claims of 1100 g and 1200 g are plausible with these data.

To construct a confidence interval for σ2, we use the fact that

(8− 1)S2

σ2
∼ χ2

7.

If χ2
7,γ denotes the γ-quantile of a χ2

7 distribution, then a 1− α confidence interval for σ2
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is given by

C(X1, . . . , X8) =

[
7S2

χ2
7,1−α/2

,
7S2

χ2
7,α/2

]
.

For instance, with 1− α = 95%, if

s2 = 2798.21, χ2
7,0.025 = 1.69, χ2

7,0.975 = 16.01,

one obtains the confidence interval for σ2, and by taking square roots, the interval for σ

is approximately

[34.98, 107.66].

Remark 2.5. In this example, the confidence intervals are exact because precise distri-

butional results are available. In many other situations, one can only obtain approximate

confidence intervals using the central limit theorem.

2.4 Approximate Confidence Intervals

A general approximate approach is provided by the central limit theorem (CLT). Often,

an estimator T is a function of a sum, say,

T =
1

n

n∑
i=1

Yi.

By the CLT, for large n,

n∑
i=1

Yi ≈ N
(
nE[Yi], n Var[Yi]

)
,

which can be used to approximate the distribution of T and, hence, to construct approx-

imate confidence intervals.

Example 2.3 (Tea Tasting Lady (Approximate Confidence Intervals)). Suppose that in

n = 10 trials the tea tasting lady correctly classifies 6 pairs (i.e., s = 6). In any model

Pθ, the number of successes S10 is Bin(10, θ). We wish to obtain a confidence interval for

the unknown parameter θ.

By the central limit theorem, for large n,

S10 ≈ N
(
10 θ, 10 θ(1− θ)

)
.

Define the standardized statistic

S∗
10 =

S10 − 10θ√
10 θ(1− θ)

≈ N(0, 1).
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For θ = θ0 =
1
2
, this becomes

T =
S10 − 5√
10 · 1

4

=
2S10 − 10√

10
≈ N(0, 1)

under Pθ0.

To perform a two-sided test at a given level α, choose the critical region

K = (−∞,−c) ∪ (c,∞),

so that

Pθ0(|T | > c) ≈ α.

Since the distribution of T under Pθ0 is symmetric, we have

α ≈ 2
(
1− Φ(c)

)
,

and hence,

c ≈ Φ−1
(
1− α

2

)
.

For example, if α = 0.01, then

c ≈ Φ−1(0.995) = 2.576.

One can then derive an approximate confidence interval for θ by solving

|S10 − 10θ| ≤ c
√
10 θ(1− θ).

There are several methods to solve this inequality:

Method 1: Assume θ(1− θ) ≈ 1
4
(its maximum value). Then the inequality simplifies to

|S10 − 10θ| ≤ c

2

√
10,

yielding the approximate confidence interval[
S10 −

c

2

√
10, S10 +

c

2

√
10
]
.

Method 2: Use the exact approximate distribution

S10 ∼ N
(
10θ, 10 θ(1− θ)

)
,
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and write the approximate confidence interval for θ as

θ ≈ S10

10
± c√

10

√
θ(1− θ)

10
.

Then substitute θ by its estimate S10

10
to obtain a “double approximate” interval.

For instance, with 1−α = 95% (so that c = 1.96) and an observed s = 6, the estimated θ

is 0.6. Using Method 1, one obtains an interval approximately [0.290, 0.910], and Method

2 gives an interval about [0.296, 0.904]. (Solving the quadratic equation exactly might

yield an interval such as [0.3127, 0.8318].) For larger sample sizes (say, n = 100 with

s = 60), the approximate intervals become much narrower and tend to agree closely across

methods.

3 Tests

3.1 Null and Alternative Hypotheses

The starting point is, as in the previous section, a sample X1, . . . , Xn. We again consider

a family of probability measures Pθ with θ ∈ Θ that describes our possible models. (Note

that θ can be unidimensional or multidimensional.) We often have a prior belief about

where in Θ the correct (but unknown) parameter θ might lie, and we wish to test this

belief using the data. The basic problem is to decide between two competing classes of

models – namely, the null hypothesis and the alternative hypothesis.

More precisely, one sets

Null hypothesis H0 : θ ∈ Θ0,

Alternative hypothesis HA : θ ∈ ΘA,

with Θ0 ∩ΘA = ∅. (If no explicit alternative is specified, one takes ΘA = Θ \Θ0.) When

Θ0 or ΘA consists of a single value θ0 or θA, they are called simple; otherwise, they are

called composite.

In explicit terms, the null hypothesis states:

H0 : “the true (but unknown) parameter θ lies in the set Θ0.”

and the alternative hypothesis

HA : “the true (but unknown) parameter θ lies in the set ΘA.”

Example 3.1 (Tea Tasting Lady). An English lady claims that when drinking tea with

milk she can, by taste alone, distinguish whether the milk or the tea was poured into the

cup first. How can one verify whether this claim is true?
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As in the previous section, we ask the lady over n days to classify two cups (one of type

1 and one of type 2); that is, she is required to state in which cup the milk was poured

first. We record the outcomes x1, x2, . . . , xn ∈ {0, 1} (where 0 indicates an incorrect

classification and 1 a correct classification) and, as usual, treat these data as realizations

of the random variables X1, X2, . . . , Xn. Let

Sn =
n∑

i=1

Xi

denote the (random) number of correctly classified pairs.

As our model, we again assume that the Xi are independent and identically distributed

according to a Bernoulli distribution, i.e.,

Xi
i.i.d.∼ Ber(θ)

with parameter θ ∈ Θ = [0, 1]. Then, naturally,

Sn ∼ Bin(n, θ)

under Pθ; in other words, in the model Pθ (which corresponds to a given θ), the number

Sn of successes is binomially distributed with parameters n and θ.

As skeptics, we doubt the lady’s claimed ability. Therefore, we choose as our (simple) null

hypothesis

H0 : θ = 1
2
,

i.e. Θ0 = {1
2
} (“random guessing—anyone can do that”). The (composite) alternative

hypothesis, asserting that the lady possesses special abilities, is then

HA : θ > 1
2
,

i.e. ΘA =
(
1
2
, 1
]
.

To proceed further, we now need to formalize the decision-making process based on the

data. (We will return to the details of this example later.) ♢

3.2 Tests and Decisions

Definition 3.1 (Test). A test is a pair (T,K), where

• T is a statistic of the form T = t(X1, . . . , Xn) (the test statistic), and

• K ⊂ R is a (deterministic) set, called the critical region (or rejection region).

Given the observed data x1 = X1(ω), . . . , xn = Xn(ω), a statistical test enables us to

systematically accept or reject the null hypothesis H0. We first compute the test statistic
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T (ω) = t(X1(ω), . . . , Xn(ω)) and then follow the decision rule:

Reject H0 if T (ω) ∈ K,

Do not reject H0 if T (ω) /∈ K.

Because T is a random variable, the event {T ∈ K} has a probability which we can

consider under each model Pθ.

There are two types of errors:

1. A Type I error occurs when the null hypothesis is wrongly rejected even though it

is true. For θ ∈ Θ0, this error has probability Pθ[T ∈ K].

2. A Type II error occurs when the null hypothesis is not rejected (or is accepted) even

though it is false. For θ ∈ ΘA, this error has probability Pθ[T /∈ K] = 1−Pθ[T ∈ K].

Example 3.2 (Tea Tasting Lady). In the tea tasting lady example, a Type I error occurs

if we reject the null hypothesis of random guessing even though it is true (i.e. the lady

has no special ability). Conversely, a Type II error occurs if we fail to reject the null

hypothesis, thereby missing the lady’s special ability when it is indeed present.

3.3 Significance Level and Power

When choosing an appropriate test, minimizing the probability of a Type I error is crucial.

A Type I error occurs if we reject H0 (i.e. if T ∈ K) even though H0 is true. We would like

our test to have a low probability of a Type I error. To this end, we define the significance

level of a test.

Definition 3.2 (Significance Level). Let α ∈ (0, 1). A test (T,K) is said to have signifi-

cance level α if for all θ ∈ Θ0

Pθ[T ∈ K] ≤ α.

Our second objective is to avoid a Type II error. This leads directly to the definition of

the power of a test.

Definition 3.3 (Power). The power of a test (T,K) is defined as the function

β : ΘA → [0, 1], θ 7→ β(θ) := Pθ[T ∈ K].

The primary goal is to minimize the probability of a Type I error (i.e., keep the test’s

significance level low). Having fixed a level α, we design a test with significance level α.

Our secondary goal is to maximize the power (i.e., minimize the probability of a Type II

error, which is 1 − β(θ) for θ ∈ ΘA). Notice that this asymmetry means it is inherently

more difficult to reject H0 than to fail to reject it. Therefore, a serious test often adopts

as the null hypothesis the negation of the statement one actually wishes to prove. If one
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can still reject H0 under these stringent conditions, one can be more confident that an

effect is truly present.

It follows that the decision of a test depends on how one defines the null and alternative

hypotheses. In fact, the same question might lead to different decisions if the roles of H0

and HA are interchanged. (We will illustrate this with an example later.)

Important: The decision in a test is never a proof; it is only an interpretation of how well

the data agree with the presumed model. If T (ω) ∈ K, we reject H0 and thus disbelieve

that θ ∈ Θ0, which may (but need not) lead us to believe that θ is in ΘA. If T (ω) /∈ K,

we do not reject H0 and are reinforced in our belief that θ ∈ Θ0. However, we know no

more about the true value of θ than before — a test does not provide a proof.

Example 3.3. Tea Testing Lady (Cont.)

Under Pθ the random variables X1, . . . , Xn are again assumed to be i.i.d. distributed as

Ber(θ), and hence the total number of successes

Sn =
n∑

i=1

Xi

is distributed as Bin(n, θ). In this example the null and alternative hypotheses are set as

H0 : θ = 1
2

and HA : θ > 1
2
.

Because one would expect more ones (correct classifications) for θ > 1
2
than for θ = 1

2
, a

large value of Sn supports HA. A plausible test is to use the test statistic

T := Sn

and to choose a critical region of the form

K = (c,∞).

In other words, we reject the hypothesis of random guessing (i.e. H0) if the lady achieves

many successes.

Since our null hypothesis is θ = 1
2
(i.e. “no special ability”), we deliberately set the test up

so that even if the lady has some ability, a positive result is required to reject the skeptical

null hypothesis.

In order to determine the critical value c corresponding to a significance level α, we need

the probabilities

P 1
2
[Sn > c]

for θ = 1
2
, and for the power function we also need

β(θ) = Pθ[Sn > c]
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for θ > 1
2
. In general, one needs to know the distribution of the test statistic T under

every Pθ (or at least under the null hypothesis). In practice, this is usually not possible

exactly; if the distribution under H0 cannot be obtained exactly, an approximation must

suffice.

Suppose we perform the test over n = 10 days. The following table shows the binomial

probabilities P 1
2
[S10 > k] for various values of k:

θ k = 7 k = 8 k = 9 k = 10

0.7 0.3828 0.1493 0.0282 0

0.6 0.1673 0.0464 0.0060 0

0.5 0.0547 0.0107 0.0010 0

To obtain a significance level α of approximately 5%, we require that

P 1
2
[S10 > c] ≤ 0.05.

Choosing c = 7 yields P 1
2
[S10 > 7] = 0.0547, which is roughly 5%. At this level, we are

willing to reject the null hypothesis (of random guessing) when 8 or more successes are

observed.

The power of the test can also be derived from the table. For example, for the chosen

c = 7 we have

β(0.6) = P0.6[S10 > 7] = 0.1673, and β(0.7) = 0.3828.

Thus, we see that

1− β(θ) = Pθ[S10 ≤ 7]

becomes rather large for θ in the alternative, indicating that the test has a significant

probability of a Type II error (i.e. failing to detect a real ability) when the deviation from

0.5 is weak.

♢

Remark 3.1 (Remark 3.4). Because the test statistic T in the above example is discrete,

it is generally impossible to achieve exactly the preassigned significance level α. That is,

one cannot usually find a critical region K such that

Pθ0 [T ∈ K] = α.

(Indeed, even for a simple null hypothesis Θ0 = {θ0} this is problematic in the discrete

case.) A common workaround is to use a randomized test: One selects a number γ ∈ [0, 1]

such that

γ Pθ0 [T > c] + (1− γ)Pθ0 [T > c+ 1] = α,

and then decides as follows: If T > c, the null hypothesis is rejected with probability γ; that
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is, H0 is rejected if (i) T > c holds, and (ii) an independent U(0, 1)-distributed random

variable takes a value less than or equal to γ.

In the above example, using such a randomized test one can achieve the exact level α = 5%

by choosing c = 7 and setting

γ =
α− Pθ0 [T > c+ 1]

Pθ0 [T > c]− Pθ0 [T > c+ 1]
≈ 0.893.

The above situation, with simple null and alternative hypotheses, is so specific that it

rarely occurs in practice. However, the basic idea can be generalized and often leads to

good or even optimal tests under less restrictive assumptions. In later sections, examples

will illustrate that the resulting tests are often intuitively very plausible.

3.4 Construction of Tests

In this section, we explain a systematic approach to test construction which, in many

situations, leads to an optimal test. The idea dates back to Neyman and Pearson.

Assume that θ0 ̸= θA are two fixed numbers. In this section, we assume that both the

null hypothesis and the alternative hypothesis are simple, i.e.,

H0 : θ = θ0, HA : θ = θA.

Furthermore, we assume that the random variables X1, . . . , Xn are either jointly discrete

or jointly continuous under both Pθ0 and PθA . In particular, the likelihood function

L(x1, . . . , xn; θ) is well-defined for θ = θ0 and θ = θA (see Definition 1.4).

Definition 3.4 (Likelihood Ratio). For every x1, . . . , xn, define the likelihood ratio

R(x1, . . . , xn) :=
L(x1, . . . , xn; θA)

L(x1, . . . , xn; θ0)
.

By convention, if L(x1, . . . , xn; θ0) = 0, we set R(x1, . . . , xn) = +∞.

Intuitively, a large ratio indicates that the observations x1, . . . , xn are far more likely

under the alternative PθA than under the null Pθ0 . Hence, it makes sense to define the

test statistic as

T := R(X1, . . . , Xn),

and to choose the critical region as

K := (c,∞)

for some constant c.

Definition 3.5 (Likelihood Ratio Test). Let c ≥ 0. The likelihood ratio test with param-
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eter c is the test (T,K) where

T = R(X1, . . . , Xn) and K = (c,∞).

The likelihood ratio test is optimal in the following sense: Any other test with significance

level no greater than the level of the likelihood ratio test will have lower power (i.e., a

higher probability of a Type II error).

Theorem 3.1 (Neyman–Pearson Lemma (Theorem 3.7)). Let c ≥ 0 and let (T,K) be the

likelihood ratio test with parameter c and significance level α∗ := Pθ0 [T > c]. If (T ′, K ′)

is any other test with significance level α ≤ α∗, then

PθA [T
′ ∈ K ′] ≤ PθA [T ∈ K].

Remark 3.2. (Proof: See Krengel, Theorem 6.2.)

The situation above with simple hypotheses is very special; in practice such cases occur

rarely. However, the basic idea can be generalized to yield good or even optimal tests

under less restrictive conditions. Often, for composite hypotheses the generalized likelihood

ratio

R(x1, . . . , xn) :=
supθ∈ΘA

L(x1, . . . , xn; θ)

supθ∈Θ0
L(x1, . . . , xn; θ)

(or an alternative version using the union ΘA ∪ Θ0) is used, and one chooses the test

statistic as T := R(X1, . . . , Xn) with critical region K = (c0,∞), where c0 is chosen such

that the test has the preassigned significance level.

Example 3.4 (Tea Testing Lady via the Likelihood Ratio Method). Assume that in the

coin-toss model underlying the tea testing lady experiment, the random variables

X1, . . . , Xn

are independent and identically distributed with

Xi ∼ Ber(θ),

so that the probability mass function is

pX(xi; θ) = θxi (1− θ) 1−xi , for xi ∈ {0, 1}.

Thus, the joint likelihood function for an observed sample (x1, . . . , xn) is given by

L(x1, . . . , xn; θ) =
n∏

i=1

pX(xi; θ) = θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi .
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We now consider testing the hypothesis that the lady is merely guessing. Choose as the

null hypothesis

H0 : θ = 1
2
,

and as the alternative hypothesis

HA : θ > 1
2
.

For fixed data x1, . . . , xn, define the likelihood ratio as

R(x1, . . . , xn; θ0, θA) :=
L(x1, . . . , xn; θA)

L(x1, . . . , xn; θ0)
.

Since under H0 we have θ0 =
1
2
, it follows that

L(x1, . . . , xn;
1
2
) =

(1
2

)n
.

Therefore, the likelihood ratio becomes

R(x1, . . . , xn;
1
2
, θA) =

L(x1, . . . , xn; θA)(
1
2

)n =

(
θA
1
2

)∑n
i=1 xi

(
1− θA

1
2

)n−
∑n

i=1 xi

.

Because by assumption θA > 1
2
, it follows that the ratio

θA(1− θ0)

θ0(1− θA)
=

θA (1− 1
2
)

(1
2
)(1− θA)

=
θA

1− θA
> 1.

Thus, R(x1, . . . , xn;
1
2
, θA) is large exactly when the exponent

∑n
i=1 xi is large.

Instead of working with the full likelihood ratio, we note that it is equivalent (in terms of

ordering the data) to use the total number of successes as the test statistic. Hence, we

define

T :=
n∑

i=1

Xi = Sn,

and choose the critical region

K := (c,∞),

with the constant c chosen to ensure that the test meets the specified significance level

under H0.

Thus, the Neyman–Pearson approach leads us to reject H0 (i.e. the hypothesis of random

guessing) if the observed sum Sn is large. This procedure is exactly equivalent to the test

procedure we earlier motivated by plausibility arguments. ♢

Example 3.5 (Example: Testing the Mean in a Normal Model with Known Variance).

Let X1, . . . , Xn be independent and identically distributed under Pθ with

Xi ∼ N(µ, σ2)
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and with known variance σ2; hence, the unknown parameter here is θ = µ ∈ R. The

probability density function of Xi under Pθ is

fX(xi; θ) =
1

σ
√
2π

exp
(
−(xi − µ)2

2σ2

)
=

1√
2πv

exp
(
−(xi − µ)2

2v

)
,

where we have set v = σ2. Since the Xi are i.i.d., the joint likelihood function is

L(x1, . . . , xn; θ) =
n∏

i=1

fX(xi; θ) = (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

The likelihood ratio is then defined as

R(x1, . . . , xn; θ0, θA) =
L(x1, . . . , xn; θA)

L(x1, . . . , xn; θ0)
.

In our application we wish to test the hypothesis

H0 : θ = θ0 versus HA : θ = θA.

Because the likelihood under H0 is

L(x1, . . . , xn; θ0) = (2πσ2)−n/2 exp
(
− 1

2σ2

n∑
i=1

(xi − θ0)
2
)
,

the ratio becomes

R(x1, . . . , xn; θ0, θA) = exp

(
− 1

2σ2

[ n∑
i=1

(xi − θA)
2 −

n∑
i=1

(xi − θ0)
2
])

.

This can be rewritten (up to a multiplicative constant depending on σ, θ0, θA) as

R(x1, . . . , xn; θ0, θA) = const.(σ, θ0, θA) · exp
(θA − θ0

σ2

n∑
i=1

xi

)
.

Thus, the likelihood ratio tends to be large when the exponent

(θA − θ0)
n∑

i=1

xi

is large. Note that the interpretation of “large” here depends on the sign of θA − θ0. In

any case, we choose as the test statistic

T ′ :=
n∑

i=1

Xi.

23



If θA > θ0 (so that θA − θ0 > 0), the exponent is large when T ′ is large; then we choose

the critical region of the form

K ′
(>) := (c′(>),∞),

i.e. we reject H0 when T ′ is large. Conversely, if θA < θ0, then the exponent is large when

T ′ is small (i.e. negative), and the critical region is of the form

K ′
(<) := (−∞, c′(<)).

In both cases, the critical region must be chosen (i.e. the constants c′(>) or c
′
(<) determined)

so that the test attains a preassigned significance level α. That is, we wish to have

Pθ0 [T
′ ∈ K ′] ≤ α,

and for that we need the distribution of T ′ under Pθ0, i.e. under H0.

In the present case this is straightforward. Under any Pθ the Xi are i.i.d. ∼ N(θ, σ2),

hence the sum

T ′ =
n∑

i=1

Xi ∼ N(nθ, nσ2)

under Pθ. Equivalently, we may define

T =
Xn − θ

σ/
√
n

∼ N(0, 1)

under Pθ, so that we can use T in place of T ′. One should note that T is actually

computable in the model Pθ for θ ∈ Θ0, i.e. with θ = θ0 (under H0), because by assumption

the variance σ2 is known and the mean θ0 to be tested is also known. (The same applies

to T ′; however, the distribution of T under H0 is simpler than that of T ′.) ♢

3.5 Examples

In this section we illustrate the considerations above by a few examples. (We largely

refrain from detailed derivations and present only the recipes.)

Example 3.6 (Normal Distribution, Test for the Mean with Known Variance). This test

is known as the z-test. Here the random variables

X1, . . . , Xn are i.i.d. ∼ N(θ, σ2)

under Pθ with known variance σ2, and we wish to test the hypothesis

H0 : θ = θ0.

Possible alternatives HA are either θ > θ0 or θ < θ0 (one-sided), or θ ̸= θ0 (two-sided);
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which alternative is most appropriate depends on the concrete question.

In every case the test statistic is (see the last example in Section 3.4)

T :=
Xn − θ0
σ/

√
n

∼ N(0, 1) under Pθ0 .

The critical region K takes the form:

• K = (c>,∞) for a one-sided test against HA : θ > θ0,

• K = (−∞, c<) for a one-sided test against HA : θ < θ0,

• K = (−∞,−c=) ∪ (c=,∞) for a two-sided test against HA : θ ̸= θ0.

For example, the condition

α = Pθ0 [T ∈ (c>,∞)] = Pθ0 [T > c>] = 1− Pθ0 [T ≤ c>] = 1− Φ(c>)

implies that

c> = Φ−1(1− α) ≡ z1−α.

Thus, for θ > θ0 we reject H0 if

Xn > θ0 + z1−α
σ√
n
.

Analogous reasoning yields c< = zα = −z1−α and for the two-sided test c= = z1−α/2. ♢

Example 3.7 (Ostrich Eggs (Known Variance)). The Australians Mr. Smith and Dr. Thurston

are still disputing the average weight of ostrich eggs. Both agree that the weights may be

modeled as normally distributed; however, Mr. Smith claims that the mean is 1100 g while

Dr. Thurston insists that the eggs are heavier (approximately 1200 g on average). To settle

their dispute, they travel to Africa to search for ostrich eggs. Because these are usually

well hidden, they find only eight eggs with the following weights (in grams):

1090, 1150, 1170, 1080, 1210, 1230, 1180, 1140.

Dr. Thurston proposes to test Mr. Smith’s claim by taking the hypothesis

H0 : µ = µ0 = 1100

against the alternative HA : µ > 1100 (or alternatively, against µ = 1200) at the 5% level.

The variance is known; in fact, σ = 55 g. Dr. Thurston computes the sample mean as

x̄ =
1

8

8∑
i=1

xi = 1156.25,
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and from a standard normal table he finds z0.95 = 1.645. Hence, the test statistic is

TTh =
x̄− µ0

σ/
√
8

≈ 1156.25− 1100

55/
√
8

≈ 2.89.

Since TTh > 1.645, the hypothesis µ = 1100 is rejected at the 5% level.

Mr. Smith, however, feels that this procedure disadvantages him and suggests instead test-

ing Dr. Thurston’s claim with the hypothesis

H0 : µ = µ1 = 1200

against the alternative HA : µ < 1200 (or alternatively, µ = 1100). He computes the

corresponding test statistic as

TSm =
x̄− µ1

σ/
√
8

≈ 1156.25− 1200

55/
√
8

≈ −2.25.

Since −2.25 < −1.645 (with z0.05 = −1.645), the hypothesis µ = 1200 is rejected at the

5% level. ♢

Example 3.8 (Normal Distribution, Test for the Mean with Unknown Variance (t-test)).

This test is known as the t-test. Here, the observations

X1, . . . , Xn are i.i.d. ∼ N(µ, σ2)

under Pθ, but now the variance σ2 is unknown. In this case the parameter is θ = (µ, σ2)

(with σ2 unknown). We wish to test

H0 : µ = µ0.

Strictly speaking, this is a composite hypothesis since σ2 is unspecified. Explicitly, the null

set is

Θ0 = {µ0} × (0,∞).

The test statistic is defined as

T :=
X̄ − µ0

S/
√
n

∼ tn−1 under Pθ0 ,

where

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Depending on whether the alternative is one-sided or two-sided, the critical region is cho-

sen according to the appropriate tn−1 quantiles. ♢

Example 3.9 (Ostrich Eggs (t-test Version)). Now, Mr. Smith and Dr. Thurston won-
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der whether, in their first experiment, they might have used an incorrect estimate of the

variance of ostrich eggs. Therefore, they decide to perform the tests again without the

assumption of known variance—that is, by using a t-test.

Dr. Thurston still insists on testing

H0 : µ = 1100 against HA : µ > 1100,

at the 5% level. Since the variance is unknown, he calculates the sample variance as

s2 =
1

n− 1

(
n∑

i=1

x2
i − nx̄2

)
= 2798.21,

so that s = 52.90. From a t-distribution with 7 degrees of freedom one finds t7,0.95 = 1.895.

Then the test statistic is

T̃Th =
x̄− 1100

s/
√
8

≈ 1156.25− 1100

52.90/
√
8

≈ 3.008.

Since 3.008 > 1.895, the hypothesis H0 : µ = 1100 is rejected at the 5% level.

Not surprisingly, Mr. Smith remains unconvinced and suggests instead testing Dr. Thurston’s

claim with the alternative hypothesis reversed:

H0 : µ = µ1 = 1200 against HA : µ < 1200 (or also µ = 1100).

He computes the test statistic

T̃Sm =
x̄− 1200

s/
√
8

≈ 1156.25− 1200

52.90/
√
8

≈ −2.339.

Since for the 5% level we have t7,0.05 = −t7,0.95 = −1.895 and T̃Sm < −1.895, the hypothesis

H0 : µ = 1200 is rejected at the 5% level. ♢

Example 3.10 (Paired Two-Sample Test in a Normal Model). Suppose that a group of

subjects is measured under two different conditions, yielding paired observations (X1, Y1), . . . , (Xn, Yn).

Assume that under Pθ the pairs are independent and that

Xi ∼ N(µX , σ
2) and Yi ∼ N(µY , σ

2),

with identical variance σ2. Such a situation occurs, for example, when the same subjects

try two different treatments, yielding a natural pairing.

In this case one can reduce the two-sample problem to a one-sample problem by considering

the differences

Zi := Xi − Yi.
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Then the Zi are i.i.d. with

Zi ∼ N(µX − µY , 2σ
2).

Thus, tests for the difference of the means can be performed by applying the one-sample

test (using a z-test when σ2 is known or a t-test when it is unknown).

These tests are known as the paired two-sample z-test (if σ2 is known) or the paired

two-sample t-test (if σ2 is unknown). ♢

Example 3.11 (Unpaired Two-Sample Test in a Normal Model). Consider now two

independent samples:

X1, . . . , Xn ∼ N(µX , σ
2) and Y1, . . . , Ym ∼ N(µY , σ

2),

where the variance is assumed to be the same in both groups, but the sample sizes n and

m may differ. In this unpaired situation, pairwise differences cannot be formed and one

must use an unpaired test.

(a) If σ2 is known, the test statistic is given by

T :=
(Xn − Ym)− (µX − µY )

σ
√

1
n
+ 1

m

∼ N(0, 1)

under every Pθ. Here σ is known and µX − µY is presumed known under H0; this is the

unpaired two-sample z-test.

(b) If σ2 is unknown, one first computes the sample variances

S2
X :=

1

n− 1

n∑
i=1

(Xi − X̄)2, S2
Y :=

1

m− 1

m∑
j=1

(Yj − Ȳ )2.

Then the pooled variance is defined as

S2 :=
(n− 1)S2

X + (m− 1)S2
Y

n+m− 2
.

The test statistic becomes

T :=
(Xn − Ym)− (µX − µY )

S
√

1
n
+ 1

m

∼ tn+m−2

under Pθ. This test is known as the unpaired two-sample t-test. ♢

Most of the tests presented above are based on the assumption that the samples are

normally distributed; this situation is very convenient because then the distribution of

the test statistic is available in explicit form. These tests work very well when the data

are indeed normally distributed; however, if this assumption does not hold, they quickly

lose a significant portion of their power. Therefore, it is advisable to also be familiar with

28



alternative tests that rely on less specific assumptions.

3.6 The p-value

Let X1, . . . , Xn be a sample of size n. We wish to test a hypothesis

H0 : θ = θ0

against an alternative

HA : θ ∈ ΘA.

Definition 3.6 (Ordered Family of Tests). A family of tests (T, (Kt)t≥0) is said to be

ordered with respect to the test statistic T if for all s, t ≥ 0

s ≤ t =⇒ Ks ⊃ Kt.

Typical examples are:

Kt = (t,∞) (right-tailed test), Kt = (−∞,−t) (left-tailed test),

or

Kt = (−∞,−t) ∪ (t,∞) (two-sided test).

Definition 3.7. Let H0 : θ = θ0 be a simple null hypothesis and let (T, (Kt)t≥0) be an

ordered family of tests. The p-value is defined as the random variable

p-value = G(T ),

where the function G : R+ → [0, 1] is given by

G(t) = Pθ0

[
T ∈ Kt

]
.

Remark 3.3. • The p-value, as a function of the test statistic T , is itself a random

variable.

• The p-value depends directly on the initial observations X1, . . . , Xn; repeating the

test with new data yields a new (random) p-value.

• The p-value always lies in the interval [0, 1]. In the case where T is continuous and

Kt = (t,∞), it can be shown that under Pθ0 the p-value is uniformly distributed on

[0, 1].

The p-value informs us which tests in our family {(T,Kt) : t ≥ 0} would lead to rejection

of H0. In fact, if the observed p-value is p, then every test with significance level α > p

would reject H0 and those with α ≤ p would not. Notice that the p-value depends solely

on the null hypothesis; the alternative hypothesis does not enter its definition.
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Example 3.12 (Coin Toss Example). Suppose we toss a coin 100 times and observe 60

heads. Our model assumes that

X1, . . . , X100 are i.i.d. ∼ Be(θ)

with θ ∈ [0, 1]. Under the null hypothesis we have

H0 : θ = 1
2
,

so that Θ0 = {1
2
} and the alternative is

HA : θ ̸= 1
2
,

i.e., ΘA = [0, 1] \ {1
2
}. The number of successes is

S100 =
100∑
i=1

Xi,

and under Pθ we have S100 ∼ Bin(100, θ).

To simplify calculations, we approximate the binomial distribution by a normal distribution

(by the central limit theorem). For every θ we have

S100 ≈ N(100θ, 100θ(1− θ)).

Thus, we may define

T ′ :=
S100 − 100θ√
100θ(1− θ)

≈ N(0, 1)

under Pθ. For θ = 1
2
, this becomes

T =
S100 − 50√

25
=

S100 − 50

5
.

An equivalent form is

T =
2S100 − 100

10
≈ N(0, 1) under Pθ0 .

For a two-sided test we choose the symmetric critical region

K := (−∞,−c) ∪ (c,∞),

so that H0 is rejected if |T | > c. To have a test of approximate level α, we require

α = Pθ0 [|T | > c] ≈ 2
(
1− Φ(c)

)
,
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which implies

c ≈ Φ−1
(
1− α

2

)
.

For example, if α = 0.01, then c ≈ Φ−1(0.995) = 2.576. In our coin toss example, this

translates (after back-transformation) to rejection of H0 if

S100 > 62.88 or S100 < 37.12.

Finally, the realized p-value is computed as

p-value(ω) = Pθ0

[
|T | > t0

]∣∣∣
t0=T (ω)

≈ 2
(
1− Φ(T (ω))

)
.

For instance, if T (ω) = 2 then

p-value(ω) ≈ 2
(
1− Φ(2)

)
= 2
(
1− 0.97725

)
= 0.0455.

Thus, with 60 successes we would reject the hypothesis of a fair coin at the 5% level, but

not at the 1% level. ♢

Summary of Tests

To conclude this section, the general procedure for hypothesis testing is summarized as

follows:

1. Choice of the Model. Specify the underlying probability model.

2. Formulation of Hypotheses. Clearly state the null hypothesis H0 and the alter-

native hypothesis HA.

3. Test Statistic and Critical Region. Determine the test statistic T and the form

of the critical region K (this can be derived via a generalized likelihood ratio test

or taken from standard statistical literature).

4. Setting the Significance Level. Choose the significance level α so that the critical

region K satisfies, approximately,

sup
θ∈Θ0

Pθ[T ∈ K] ≤ α.

5. Decision Rule. Compute the observed value T (ω) from the data. If T (ω) ∈ K

reject H0, otherwise do not reject H0.

6. (Optional) p-value. Alternatively, compute the realized p-value. If it is less than

or equal to α, reject H0.
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