Dr. Fabian Ziltener

Serie 5

STRUKTUR, VARIABLENBELEGUNG, INTERPRETATION, MODELL EINER THEORIE

Einige (Teil-)Aufgaben sind mit (*) markiert. Versuchen Sie, wenigstens diese Aufgaben zu lösen.

- **0**. (Modell) Seien e, α, β verschiedene Objekte.
 - (a) ((*) **Gruppentheorie**) Wir betrachten die Signatur der Gruppentheorie, $\mathcal{L} := \mathcal{L}_{GT} = \{e, \circ\}$. Wir definieren den Bereich $A := \{e, \alpha, \beta\}$ und die Abbildung $\circ : A^2 = A \times A \to A$ durch folgende Verknüpfungstabelle:

$$\begin{array}{c|cccc} \bullet & e & \alpha & \beta \\ \hline e & e & \alpha & \beta \\ \alpha & \alpha & \beta & e \\ \beta & \beta & e & \alpha \end{array}$$

Wir definieren die Abbildung M auf \mathscr{L}_{GT} durch:

$$e^{\mathbf{M}} \equiv \mathbf{M}(e) :\equiv \mathbf{e} \qquad \circ^{\mathbf{M}} \equiv \mathbf{M}(\circ) :\equiv \circ$$

Zeigen Sie, dass (A, \mathbf{M}) ein Modell der Gruppentheorie ist.

Bemerkung: Für jede \mathcal{L}_{GT} -Struktur (A, \mathbf{M}) gilt $\mathbf{M} \models \mathsf{GT}$ genau dann, wenn das Tripel $(A, e^{\mathbf{M}}, \circ^{\mathbf{M}})$ eine Gruppe ist. Das Tripel (A, e, \circ) aus dieser Aufgabe ist also eine Gruppe.

Hinweise:

- Zeigen Sie $M \models \mathsf{GT}_i$ in der Reihenfolge i = 1, 0, 2.
- $\mathbf{M} \models \mathsf{GT}_1 := \forall x (e \circ x = x)$: Sei j eine Variablenbelegung in \mathbf{M} . Wir definieren die Interpretation $\mathbf{I} := (\mathbf{M}, j)$.
 - Sei $a \in A$. Zeigen Sie, dass $\mathbf{I} \frac{a}{x}(e \circ x) \equiv \mathbf{I} \frac{a}{x}(x)$. Verwenden Sie dazu, dass $\mathbf{I} \frac{a}{x}(e) \equiv e^{\mathbf{M}} \equiv e$, sowie die e-Zeile¹ der Verknüpfungstabelle.
 - Folgern Sie, dass $I \models \forall x (e \circ x = x) \equiv \mathsf{GT}_1$.

Bemerkung: $\mathbf{M} \models \forall x (e \circ x = x)$ ist äquivalent dazu, dass für jedes $a \in A$ gilt: $e \circ a = a$, d. h., e ist links-neutral.

- $\mathbf{M} \models \mathsf{GT}_0 := \forall x \forall y \forall z \big(x \circ (y \circ z) = (x \circ y) \circ z \big)$: Sei j eine Variablenbelegung in \mathbf{M} . Wir definieren $\mathbf{I} := (\mathbf{M}, j)$. Seien $a, b, c \in A$. Wir kürzen ab: $J := \big((\mathbf{I} \frac{a}{x}) \frac{b}{y} \big) \frac{c}{z}$.
 - Zeigen Sie, dass

$$J(x \circ (y \circ z)) \equiv J((x \circ y) \circ z). \tag{1}$$

Verwenden Sie dazu Folgendes:

$$J(z) \equiv c$$
 $J(y) \equiv b$ $J(x) \equiv a$ (2)

$$a \circ (b \circ c) \equiv (a \circ b) \circ c$$
 für alle $a, b, c \in A$ (3)

¹Für jedes Symbol s in der Kopfspalte (= Spalte ganz links) meinen wir mit s-Zeile die Zeile der Tabelle, welche die Kopfspalte in der Zelle mit dem Symbol s schneidet.

Warum gelten die Identitäten (2)?

Um (3) zu zeigen, können wir im Prinzip alle Tripel $(a,b,c) \in A^3$ durchgehen und die Verknüpfungstabelle benutzen. Es gibt $3 \cdot 3 \cdot 3 = 27$ solche Tripel. Um den Beweis von (3) zu vereinfachen, tun Sie Folgendes: Verwenden Sie, dass o in unserem Beispiel kommutativ ist. (Überprüfen Sie das mit Hilfe der Verknüpfungstabelle!) Betrachten Sie folgende Fälle:

- * (Mindestens) eines der drei Elemente a, b, c ist gleich e.
- * Keines der drei Elemente ist gleich e: Unterfälle:

```
a \equiv c
```

 $a \equiv b \not\equiv c$

 $a \neq b \equiv c$: Verwenden Sie den Unterfall $a \equiv b \neq c$.

- Folgern Sie aus (1), dass $((\mathbf{I} \frac{a}{x}) \frac{b}{y}) \frac{c}{z} \models (x \circ (y \circ z) = (x \circ y) \circ z).$
- Folgern Sie daraus, dass $(\mathbf{I} \frac{a}{x}) \frac{b}{y} \models \forall z (x \circ (y \circ z) = (x \circ y) \circ z).$
- Argumentieren Sie analog für die Quantoren $\forall y$ und $\forall x$.
- (b) (Gruppentheorie) Finden Sie eine \mathscr{L}_{GT} -Struktur (A, \mathbf{M}) mit Bereich $A := \{e, \alpha\}$, sodass $\mathbf{M} \not\models \mathsf{GT}$.
- (c) ((*) **Theorie mit leerer Signatur**) Wir betrachten die leere Signatur $\mathcal{L} := \emptyset$ und die Theorie T gegeben durch folgendes Axiom:

$$x = y$$

- i. Finden Sie ein Modell von T.
- ii. Beschreiben Sie alle Modelle von T.
- (d) (**Ringtheorie**) Seien 0 und 1 zwei verschiedene Objekte. Finden Sie ein Modell (A, \mathbf{M}) der Ringtheorie mit Bereich $A := \{0, 1\}$. Überlegen Sie sich, dass tatsächlich $\mathbf{M} \models \mathsf{RT}$ gilt.

Bemerkung: Für jede \mathcal{L}_{RT} -Struktur (A, \mathbf{M}) gilt $\mathbf{M} \models \mathsf{RT}$ genau dann, wenn das Tupel $(A, 0^{\mathbf{M}}, 1^{\mathbf{M}}, +^{\mathbf{M}}, \cdot^{\mathbf{M}})$ ein Ring ist. Das Tupel $(A, \mathbf{0}, \mathbf{1}, +, \cdot)$ aus dieser Aufgabe ist also ein Ring.

- (e) (**Ringtheorie**) Finden Sie eine \mathscr{L}_{RT} -Struktur (A, \mathbf{M}) mit Bereich $A := \{0, 1\}$, sodass $\mathbf{M} \not\models \mathsf{RT}$.
- (f) (**Teiltheorie von** DLO) Seien α, β, γ verschiedene Objekte. Finden Sie ein Modell (A, \mathbf{M}) der Theorie $\mathsf{T} := \{\mathsf{DLO}_0, \mathsf{DLO}_1, \mathsf{DLO}_2\}$ mit Bereich $A := \{\alpha, \beta, \gamma\}$.
- (g) (**Teiltheorie von** DLO) Finden Sie ein Modell (A, \mathbf{M}) der Theorie $\mathsf{T} := \{\mathsf{DLO}_0, \mathsf{DLO}_1, \mathsf{DLO}_2\}$ mit einem unendlichen Bereich.

Hinweis: Verwenden Sie eine andere Übungsaufgabe.

Bemerkung: Überlegen Sie sich grundsätzlich, dass Ihr gefundenes (A, \mathbf{M}) tatsächlich ein Modell von T ist. Es wird *nicht* erwartet, dass Sie das im Detail ausführen.

(h) (Theorie der dichten linearen Ordnungen) Finden Sie ein Modell (A, \mathbf{M}) der Theorie DLO der dichten linearen Ordnungen.

Hinweis: Definieren Sie A als eine gewisse Menge von Zahlen.

Bemerkung: Überlegen Sie sich, dass tatsächlich $M \models \mathsf{DLO}$ gilt. Sie dürfen dabei grundlegende Eigenschaften von Zahlen verwenden.

(i) **((*) Peano-Arithmetik)** Wir definieren (\mathbb{N}, \mathbb{N}) , das Standardmodell der Peano-Arithmetik, wie in der Vorlesung, wobei wir abweichend von der ursprünglichen Definition $s^{\mathbb{N}}(n) := n|$ statt |n| definieren. (Dadurch vereinfacht sich diese Übungsaufgabe.) Zeigen Sie, dass (\mathbb{N}, \mathbb{N}) ein Modell der Peano-Arithmetik ist.

Bemerkungen:

- Sie dürfen 0.(i,ii,iii) ohne Beweis verwenden.
- Es wird *nicht* erwartet, dass Sie alle Details des Beweises von $\mathbb{N} \models \mathsf{PA}_6$ ausführen. Erklären Sie stattdessen in Worten, warum diese Aussage gilt.
- (j) (**Körpertheorie**) Seien $\mathbf{0}, \mathbf{1}, \alpha, \beta$ verschiedene Objekte. Wir definieren $A := \{\mathbf{0}, \mathbf{1}, \alpha, \beta\}$ und die Abbildungen $+, \cdot : A^2 \to A$ durch folgende Tabellen:

			α		•	0	1	α	β
0	0	1	α	β	0	0	0	0	0
1	1	0	eta	α	1	0	1	α	β
α	α	β	0	1	α	0	α	β	1
β	β	α	1	0	β	0	β	1	α

Wir definieren die Abbildung M auf $\mathcal{L}_{KT} = \{0, 1, +, \cdot\}$, der Signatur der Körpertheorie, durch:

$$0^{\mathbf{M}} :\equiv \mathbf{M}(0) :\equiv \mathbf{0}$$
 $1^{\mathbf{M}} :\equiv \mathbf{M}(1) :\equiv \mathbf{1}$ $+^{\mathbf{M}} :\equiv \mathbf{M}(+) :\equiv \mathbf{+}$ $\cdot^{\mathbf{M}} :\equiv \mathbf{M}(\cdot) :\equiv \mathbf{\cdot}$

Zeigen Sie, dass (A, \mathbf{M}) ein Modell von KT ist.

Bemerkungen: Für jede \mathcal{L}_{KT} -Struktur (A, \mathbf{M}) gilt $\mathbf{M} \models \mathsf{KT}$ genau dann, wenn das Tupel $(A, 0^{\mathbf{M}}, 1^{\mathbf{M}}, +^{\mathbf{M}}, \cdot^{\mathbf{M}})$ ein Körper ist. Das Tupel $(A, \mathbf{0}, \mathbf{1}, +, \bullet)$ aus dieser Aufgabe ist also ein Körper.

Hinweise:

- Zeigen Sie $M \models \mathsf{KT}_i$ in der Reihenfolge i = 9, 2, 1, 3, 5, 6, 7, 0, 4, 8. (i = 0, 4, 8 sind aufwendig.)
- $\mathbf{M} \models \mathsf{KT}_9 \equiv 0 \neq 1$: Sei j eine Variablenbelegung in \mathbf{M} . Wir definieren die Interpretation $\mathbf{I} := (\mathbf{M}, j)$. Zeigen Sie, dass $nicht\ \mathbf{I}(0) \equiv \mathbf{I}(1)$. Folgern Sie daraus, dass $\mathbf{I} \models \neg (0 = 1)$.

Bemerkung: $M \models 0 \neq 1$ ist äquivalent dazu, dass $0 \not\equiv 1$.

- $\mathbf{M} \models \mathsf{KT}_2 \equiv \forall x (0+x=x)$ (Links-Neutralität der Null bzgl. Addition): Sei j eine Variablenbelegung in \mathbf{M} . Wir definieren $\mathbf{I} := (\mathbf{M}, j)$.
 - Sei $a \in A$. Zeigen Sie, dass $\mathbf{I} \frac{a}{x}(0+x) \equiv \mathbf{I} \frac{a}{x}(x)$. Verwenden Sie dazu, dass $\mathbf{I} \frac{a}{x}(0) \equiv 0^{\mathbf{M}} \equiv \mathbf{0}$, sowie die 0-Zeile der Additionstabelle.
 - Folgern Sie, dass $I \models \forall x(0 + x = x) \equiv \mathsf{KT}_2$.

Bemerkung: $M \models \forall x (0 + x = x)$ ist äquivalent dazu, dass für jedes $a \in A$ gilt: 0 + a = a, d. h., 0 ist links-neutral.

• $\mathbf{M} \models \mathsf{KT}_1 \equiv \forall y \big(x + y = y + x \big)$ (Kommutativität der Addition): Sei j eine Variablenbelegung in \mathbf{M} . Wir definieren $\mathbf{I} := (\mathbf{M}, j)$. Seien $a, b \in A$. Wir kürzen ab: $J := (\mathbf{I} \frac{a}{x}) \frac{b}{y}$.

Zeigen Sie, dass

$$J(x+y) \equiv J(y+x). \tag{4}$$

Verwenden Sie dazu Folgendes:

$$J(y) \equiv b, J(x) \equiv a \text{ (Warum?)}$$

Die Additionstabelle ist symmetrisch bzgl. Spiegelung an der (nach rechts unten zeigenden) Diagonale.

- Folgern Sie aus (4), dass $(\mathbf{I} \frac{a}{x}) \frac{b}{y} \models (x + y = y + x)$.
- Folgern Sie daraus, dass $\mathbf{I} \frac{a}{x} \models \forall y (x + y = y + x)$.
- Zeigen Sie $M \models \mathsf{KT}_i$ für die übrigen i auf eine analoge Weise mit Hilfe der Additions- und Multiplikationstabellen.
- $\mathbf{M} \models \mathsf{KT}_0 \equiv \forall x \forall y \forall z \big(x + (y + z) = (x + y) + z\big)$ (Assoziativität der Addition): Seien $a,b,c \in A$. Um $a + (b + c) \equiv (a + b) + c$ zu zeigen, können wir im Prinzip alle Tripel $(a,b,c) \in A^3$ durchgehen. Davon gibt es $4 \cdot 4 \cdot 4 = 64$. Um den Beweis zu vereinfachen, tun Sie Folgendes: Verwenden Sie, dass Addition kommutativ ist. Betrachten Sie folgende Fälle:
 - (Mindestens) eines der drei Elemente a, b, c ist gleich 0.
 - Keines der drei Elemente ist gleich 0: Unterfälle:

```
a \equiv c:
```

$$a \equiv b \not\equiv c$$

 $a \neq b \equiv c$: Verwenden Sie den Unterfall $a \equiv b \neq c$.

a, b, c sind alle verschieden

- $\mathbf{M} \models \mathsf{KT}_4 \equiv \forall x \forall y \forall z \big(x \cdot (y \cdot z) = (x \cdot y) \cdot z \big)$ (Assoziativität der Multiplikation): Seien $a, b, c \in A$. Verwenden Sie, dass Multiplikation kommutativ ist. Betrachten Sie folgende Fälle:
 - Eines der drei Elemente a, b, c ist gleich 0.
 - Eines der drei Elemente ist gleich 1.
 - Keines der drei Elemente ist gleich 0 oder 1: Unterfälle:

$$a \equiv c$$

$$a \equiv b \not\equiv c$$

 $a \neq b \equiv c$: Verwenden Sie den Unterfall $a \equiv b \neq c$.

- 1. (semantischer Beweis, GÖDELSCHER VOLLSTÄNDIGKEITSSATZ) Seien \mathcal{L} eine Signatur, T eine Menge von \mathcal{L} -Sätzen und σ ein \mathcal{L} -Satz. Ein semantischer Beweis der Aussage T $\vdash \sigma$ ist ein Beweis dieser Aussage mittels des GÖDELSCHEN VOLLSTÄNDIGKEITSSATZES. Dazu zeigen wir, dass σ in jedem Modell von T wahr ist.
 - (a) (*) (1 + 1 = 2) Zeigen Sie das Folgende mittels eines semantischen Beweises:

$$\mathsf{PA} \vdash \mathsf{s}\,0 + \mathsf{s}\,0 = \mathsf{s}\,\mathsf{s}\,0 \tag{5}$$

Hinweis: Gehen Sie ähnlich wie im Beweis einer PROPOSITION in der Vorlesung (Linksinverses in Gruppe ist Rechtsinverses) vor:

Sei (A, \mathbf{M}) ein Modell von PA. Sei j eine Variablenbelegung in A. Wir definieren $\mathbf{I} := (\mathbf{M}, j)$. Wir schreiben:

$$\mathbf{0} :\equiv 0^{\mathbf{M}} \qquad \mathbf{s} :\equiv \mathbf{s}^{\mathbf{M}} \qquad + :\equiv +^{\mathbf{M}} \qquad J := (\mathbf{I} \frac{\mathbf{s}(\mathbf{0})}{x}) \frac{\mathbf{0}}{y}$$
 (6)

- i. Schreiben Sie J(x + sy) mittels 0, s, + aus.
- ii. Verwenden Sie unsere Annahme $I \models PA_i$ für ein bestimmtes $i \in \{0, \dots, 6\}$, um zu zeigen, dass

$$J(x + sy) \equiv s(s(0) + 0). \tag{7}$$

Verwenden Sie unsere Annahme $I \models PA_i$ für ein bestimmtes $i \in \{0, ..., 6\}$, um zu zeigen, dass

$$\mathbf{s}(\mathbf{0}) + \mathbf{0} \equiv \mathbf{s}(\mathbf{0}). \tag{8}$$

iii. Folgern Sie aus 1.(a)i, (7,8), dass

$$\mathbf{s}(\mathbf{0}) + \mathbf{s}(\mathbf{0}) \equiv \mathbf{s}(\mathbf{s}(\mathbf{0})).$$

- iv. Folgern Sie daraus, dass $M \models s 0 + s 0 = s s 0$.
- v. Verwenden Sie ein KOROLLAR zum GÖDELSCHEN VOLLSTÄNDIGKEITSSATZ.
- (b) Vergleichen Sie Ihren Beweis mit dem *formalen* Beweis von (5), den Sie in Übungsserie 3 durchgeführt haben. Welcher Beweis erscheint Ihnen intuitiver und einfacher?
- (c) Zeigen Sie mittels eines semantischen Beweises, dass gilt:

$$\mathsf{PA} \vdash \forall x (0 + x = 0) \tag{9}$$

Hinweis: Gehen Sie ähnlich wie in Aufgabe 1.a vor:

Sei (A, \mathbf{M}) ein Modell von PA. Sei j eine Variablenbelegung in A. Wir definieren $\mathbf{I} := (\mathbf{M}, j)$. Wir betrachten die \mathscr{L}_{PA} -Formel

$$\varphi :\equiv 0 + x = x.$$

Zeigen Sie, dass gilt:

$$\mathbf{I} \models \varphi(x/0) \tag{10}$$

Für jedes
$$a \in A$$
 gilt: $\mathbf{I} \frac{a}{x} \models \varphi \Rightarrow \mathbf{I} \frac{a}{x} \models \varphi(x/sx)$. (11)

Hinweis für (10): Verwenden Sie unsere Annahme $I \models PA_i$ für ein bestimmtes $i \in \{0, \dots, 6\}$.

Hinweise für (11):

- Nehmen Sie an, dass $I \frac{a}{x} \models \varphi$ gilt.
- Schreiben Sie $I \frac{a}{x} \models \varphi$ und $I \frac{a}{x} \models \varphi(x/sx)$ mittels 0, s, + aus.
- Verwenden Sie unsere Annahme $I \models PA_3$, um den Ausdruck 0 + s(a) umzuschreiben.
- Verwenden Sie das ausgeschriebene I $\frac{a}{x} \models \varphi$.
- Folgern Sie, dass $I \frac{a}{x} \models \varphi(x/sx)$ gilt.

Verwenden Sie (10,11) und unsere Annahme $I \models PA_6$, um zu zeigen, dass $I \models \forall x \varphi$ gilt.

Wie erhalten wir jetzt (9)?

(d) Vergleichen Sie Ihren Beweis mit dem *formalen* Beweis von (9), den wir in der Vorlesung durchgeführt haben. Welcher Beweis erscheint Ihnen intuitiver und einfacher?

2. (*) (Konsistenz einer Theorie, Existenz eines Modells, KORREKTHEITSSATZ, GÖDELSCHER VOLLSTÄNDIGKEITSSATZ) Sei $\mathscr L$ eine Signatur und Φ eine Menge von $\mathscr L$ -Formeln. Wir nennen Φ inkonsistent g. d. w. es eine $\mathscr L$ -Formel φ gibt, sodass gilt:

$$\Phi \vdash \varphi \land \neg \varphi$$

Andernfalls nennen wir Φ konsistent. Sei jetzt T eine Menge von \mathcal{L} -Sätzen. Zeigen Sie, dass gilt:

Hinweise zu " \Leftarrow ": Wir nehmen an, dass T ein Modell (A, \mathbf{M}) besitzt. Sei φ eine Formel.

• Zeigen Sie, dass gilt:

$$\mathbf{M} \not\models \varphi \land \neg \varphi$$

Wählen Sie dazu eine Variablenbelegung j in A.

• Verwenden Sie den KORREKTHEITSSATZ.

Hinweise zu " \Rightarrow ": Wir nehmen an, dass T konsistent ist. Wir definieren $\sigma := \neg \forall x (x = x)$. **Behauptung:**

$$\mathsf{T} \not\vdash \sigma$$
 (13)

Hinweise zum Beweis dieser Behauptung:

- (a) Zeigen Sie, dass gilt: $\vdash \forall x(x=x)$
- (b) Nehmen Sie widerspruchsweise an, dass $T \vdash \sigma$. Kombinieren Sie das mit **2**.a und einer Aufgabe aus Übungsserie 2 (Konjunktion, Existenz), um zu zeigen, dass T einen Widerspruch beweist.

Aus (13) folgt, dass T ein Modell besitzt. Wie?

3. (Existenz eines Rechts-Inversen impliziert nicht Existenz eines Links-Inversen.) Wir betrachten die Signatur $\mathcal{L}_{GT} := \{e, \circ\}$ und die Axiome:

$$\begin{aligned} \mathsf{GT}_0 &\equiv & \forall x \forall y \forall z \big(x \circ (y \circ z) = (x \circ y) \circ z \big) \\ \mathsf{GT}_1 &\equiv & \forall x (e \circ x = x) \\ \sigma : &\equiv & \forall x \exists y (x \circ y = e) \end{aligned}$$

 $(\mathsf{GT}_0 \text{ und } \mathsf{GT}_1 \text{ sind Axiome der Gruppentheorie.})$ Wir definieren die Theorie $\mathsf{T} := \{\mathsf{GT}_0, \mathsf{GT}_1, \sigma\}.$ Bemerkungen:

- Intuitiv besagt σ , dass jedes Objekt x ein *Rechts* inverses besitzt.
- Es gilt $\sigma \neq \mathsf{GT}_2 \equiv \forall x \exists y (y \circ x = e)$. Intuitiv besagt das Axiom GT_2 , dass jedes Objekt x ein Links inverses besitzt.

Seien e und α zwei Objekte. Wir definieren $A := \{e, \alpha\}$ und die Funktion $\circ : A^2 \to A$ durch

$$a \circ b :\equiv \circ(a, b) :\equiv b$$
, für alle $a, b \in A$.

Wir definieren die Abbildung M auf $\mathscr{L}_{\mathsf{GT}}$ durch

$$e^{\mathbf{M}} :\equiv \mathbf{M}(e) :\equiv \mathbf{e}, \qquad \circ^{\mathbf{M}} :\equiv \mathbf{M}(\circ) :\equiv \mathbf{o}.$$

Das Paar $\mathbf{M} := (A, \mathbf{M})$ ist eine $\mathcal{L}_{\mathsf{GT}} ext{-Struktur}$.

(a) Zeigen Sie: $M \models T$

(b) Zeigen Sie: $M \not\models \mathsf{GT}_2$

Bemerkungen:

• Für jedes Modell G der Gruppentheorie GT gilt, dass $G \models \sigma$. (Das folgt daraus, dass G eine Gruppe ist und darum in G jedes Linksinverse ein Rechtsinverses ist.) Aus dem GÖDELSCHEN VOLLSTÄNDIGKEITSSATZ folgt daher, dass GT $\vdash \sigma$ und daher

$$GT \vdash T$$
,

d. h., die Gruppentheorie beweist T.

• Gemäss (a,b) ist M ein Modell von T, aber kein Modell von GT_2 . Aus der Kontraposition des KORREKTHEITSSATZES folgt daher, dass $T \not\vdash GT_2$ und daher

$$T \not\vdash GT$$
,

d. h., die Theorie T beweist die Gruppentheorie.

• Falls wir in T das Axiom GT₁ durch das Axiom *e ist (links- und rechts-)neutral* ersetzen, dann beweist die abgeänderte Theorie die Gruppentheorie. Genauer gesagt betrachten wir das Axiom

$$\tau :\equiv \forall x \big(e \circ x = x \land x \circ e = x \big).$$

Es gilt:

$$\widetilde{\mathsf{T}} := \{\mathsf{GT}_0, \tau, \sigma\} \vdash \mathsf{GT}$$

Für jedes Modell M von \widetilde{T} gilt nämlich $M \models \{GT_1, GT_2\}$ und daher $M \models GT$. (Überlegen Sie sich das!) Aus dem GÖDELSCHEN VOLLSTÄNDIGKEITSSATZ folgt daher, dass $\widetilde{T} \vdash GT$, wie behauptet.