Musterlösung Serie 18

ENDLICHE KÖRPER I

- **91**. (a) Zeigen Sie: Ist K ein endlicher Körper mit $|K| = p^n$ (für $n \ge 1$ und p prim), so ist K der Zerfällungskörper von $X^{p^n} X$ über \mathbb{F}_p .
 - (b) Zeigen Sie: Sind K und K' endliche Körper mit |K| = |K'|, so sind K und K' isomorph.

Lösung: (a) Da K ein Körper ist, ist $K^* = K \setminus \{0\}$. D.h. die multiplikative Gruppe von $|K^*|$ hat die Ordnung $p^n - 1$ und somit gilt für jedes $a \in K^*$, $a^{p^n - 1} = 1$ bzw. $a^{p^n} = a$. Weil auch $0^{p^n} = 0$ gilt, ist jedes der p^n Elemente $a \in K$ eine Nullstelle von $X^{p^n} - X$. Das Polynom $X^{p^n} - X$ hat also p^n verschiedene Nullstellen in K und somit ist K ein Zerfällungskörper von $X^{p^n} - X$ über \mathbb{F}_p .

- (b) Aus (a) folgt, dass K und K' Zerfällungskörper sind von $X^{p^n} X$ über \mathbb{F}_p , und mit Satz 15.2 folgt, dass K und K' isomorph sind.
- **92**. Bestimmen Sie die Anzahl der irreduziblen Polynome $f \in \mathbb{F}_3[X]$ vom Grad 6. *Lösung*: Allgemein gilt für p:

•
$$r_1 = p$$

•
$$r_2 = \frac{1}{2}(p^2 - p)$$

•
$$r_3 = \frac{1}{3}(p^3 - p)$$

•
$$r_4 = \frac{1}{4}(p^4 - p^2)$$

•
$$r_5 = \frac{1}{5}(p^5 - p)$$

•
$$r_6 = \frac{1}{6}(p^6 - p^3 - p^2 + p)$$

Für p = 3 ist $r_6 = 116$.

93. Wir definieren das irreduzible Polynom $f:=X^3+X+1$ über \mathbb{F}_7 . Berechnen Sie $(X^2+2)^{-1}$ im Körper $\mathbb{F}_7[X]/(f)$.

Lösung: Wir rechnen in \mathbb{F}_7 und wenden den verallgemeinerten Euklid'schen Algorithmus an: Es ist

$$(X^3 + X + 1) : (X^2 + 2) = X$$
 Rest: $(-X + 1)$
 $(X^2 + 2) : (-X + 1) = -X - 1$ Rest: 3
 $(-X + 1) : 3 = -5X$ Rest: 1
 $3 : 1 = 3$ Rest: 0

mit
$$b_0 = X$$
, $b_1 = -X - 1$, $b_2 = -5X$, $b_3 = 3$.

Nun wenden wir das Schema an:

		X	-X-1	-5X	3
0	1	X	$-X^2 - X + 1$	$5X^3 + 5X^2 - 4X$	f
1	0			h	$X^2 + 2$

Wir erhalten daraus

$$h \cdot f - (5X^3 + 5X^2 - 4X) \cdot (X^2 + 2) = 1$$

bzw.

$$(2X^3 + 2X^2 + 4X) \cdot (X^2 + 2) \equiv 1 \pmod{f}$$

und weil

$$(2X^3 + 2X^2 + 4X) - 2 \cdot f = 2X^2 + 2X + 5$$

ist

$$(X^2+2)^{-1} \equiv 2X^2+2X+5 \pmod{f}$$
.

94. Sei \mathbb{F}_q ein Körper der Ordnung $q=p^n$ für $n\geqslant 1$ und p prim, und seien $a,b\in\mathbb{F}_q$. Zeigen Sie, dass in \mathbb{F}_q folgendes gilt:

(a)
$$(a+b)^p = a^p + b^p$$
.

(b)
$$a^p = a \iff a \in \mathbb{F}_p$$
.

Lösung: (a) Es ist

$$(a+p)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k,$$

und weil

$$\binom{p}{k} = \frac{p \cdot (p-1) \cdots (p-k+1)}{1 \cdot 2 \cdots k},$$

gilt für alle $1 \le k \le p-1$, $p \mid \binom{p}{k}$, d.h. $\binom{p}{k} \equiv 0 \pmod{p}$. Somit gilt in \mathbb{F}_q :

$$(a+b)^p = a^p b^0 + a^0 b^p = a^p + b^p$$

(b) (\Leftarrow) Ist a=0, so ist $a^p=a$. Ist $a\in \mathbb{F}_p^*$, so ist, weil $|\mathbb{F}_p^*|=p-1$, $a^{p-1}=1$, also $a^p=a$.

(⇒) Ist $a^p = a$, so ist a eine Nullstelle von $X^p - X$. Die p Elemente aus \mathbb{F}_p sind, wie oben gezeigt, paarweise verschiedene Nullstellen von $X^p - X$, und weil $X^p - X$ höchstens p Nullstellen besitzt, sind alle Nullstellen von $X^p - X$ in \mathbb{F}_p .

95. Sei p eine Primzahl und sei $q=p^n$ für eine positive ganze Zahl n.

(a) Zeigen Sie: Ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ teilt $X^q - X$ in $\mathbb{F}_p[X]$ genau dann, wenn der Grad von f ein Teiler von n ist.

2

(b) Sei I_d die Menge der normierten, irreduziblen Polynome vom Grad d in $\mathbb{F}_p[X]$. Beweisen Sie die Gleichung

$$X^q - X = \prod_{d|n} \prod_{f \in I_d} f.$$

- (c) Sei $r_d := |I_d|$. Schliessen Sie $\sum_{d|n} (d \cdot r_d) = q$ aus (b).
- (d) Zeigen Sie: Die Summe der Grade aller normierten, irreduziblen Polynome, deren Grad n teilt, ist gleich q.

Lösung: (a) Mit Satz 16.5 besitzt ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ im Zerfällungskörper keine mehrfachen Nullstellen. Also ist f genau dann ein Teiler von $X^q - X$, wenn f und $X^q - X$ eine gemeinsame Nullstelle α in einem Zerfällungskörper von $X^q - X$ haben. Aber die Nullstellen von $X^q - X$ sind genau die Elemente des Körpers \mathbb{F}_q der Ordnung q. Für diese ist $[\mathbb{F}_p(\alpha) : \mathbb{F}_p]$ ein Teiler von $[\mathbb{F}_q : \mathbb{F}_p] = n$. Damit ist gezeigt, dass aus $f|X^q - X$ tatsächlich $\deg(f)|n$ folgt.

Sei nun $f \in \mathbb{F}_p[X]$ ein irreduzibles Polynom mit $\deg(f)|n$. Sei α eine Nullstelle von f in einem Zerfällungskörper von f. Dann ist $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = \deg(f)$ und somit gilt $\alpha^{p^{\deg(f)}} = \alpha$. Aus $\deg(f)|n$ folgt nun $\alpha^q = \alpha$.

(b) Wegen (a) teilt die rechte Seite die linke, denn die f sind alle zueinander teilerfremd. Der Zerfallungskörper von $X^q - X$ ist \mathbb{F}_q und wir haben bereits in Aufgabe 91

$$X^q - X = \prod_{x \in \mathbb{F}_q} (X - x)$$

bewiesen. Also hat X^q-X keine doppelten Nullstellen. Insbesondere kann kein irreduzibles Polynom X^q-X mehr als zweimal teilen. Also muss die linke Seite gleich der rechten sein, weil wir wissen welche irreduziblen Faktoren in der Faktorisierung von X^q-X vorkommen müssen und weil keiner doppelt vorkommen kann, müssen alle Faktoren einfach vorkommen.

- (c) Vergleiche den Grad auf der rechten und linken Seite in (b).
- (d) und (e) folgen direkt aus (b) bzw. (c).