Musterlösung Serie 20

ALGEBRAISCHER ABSCHLUSS

100. (a) Sei R ein kommutativer Ring. Beweisen Sie mit dem Teichmüllerprinzip, dass jedes echte Ideal in R zu einem maximalen Ideal erweitert werden kann. Bemerkung: Es gilt auch die Umkehrung.

(b) Beweisen Sie mit (a), dass jeder Körper einen algebraischen Abschluss besitzt. Lösung:

- (a) Sei $I \subsetneq R$ ein echtes Ideal in R und sei $\mathscr G$ die Familie aller Mengen $X \subseteq R$, sodass $1 \notin (X \cup I)$, d.h. das von $X \cup I$ erzeugte Ideal ist ein echtes Ideal in R. Dann hat $\mathscr G$ endlichen Charakter und mit dem Teichmüllerprinzip existiert ein maximales Element $\mathfrak m \in \mathscr G$. Aus der Maximalität der Menge $\mathfrak m \in \mathscr G$ folgt, dass $\mathfrak m$ ein maximales Ideal ist welches I enthält.
- (b) Sei K ein Körper. Wir wenden die Konstruktion aus der Vorlesung an. Auf Seite 114e in Kapitel 17 wurden ein Ring K[Z] und ein Ideal I ⊆ K[Z] definiert. Aus Aufgabe (a) folgt nun, dass ein maximales Ideal m ⊆ K[Z] existiert mit I ⊆ m. Wir definieren L := K[Z]/m. Dies ist ein Körper weil m maximal ist. Sei u ∈ K[X] ein Polynom. Dann gilt in L[X] die Gleichung

$$u = \prod_{i=1}^{\deg u} (X - z_u^{(i)})$$

aufgrund der Vieta-Relationen (Serie 17, Aufgabe 87) und der Definition von I. Also zerfällt u in Linearfaktoren. Das Argument in Aufgabe 101 beweist, dass L/K algebraisch ist. Also ist L/K ein algebraischer Abschluss.

101. Beweisen Sie die Behauptung 3 im Beweis der Existenz eines algebraischen Abschlusses. Das heisst, beweisen Sie, dass die konstruierte Erweiterung algebraisch ist.

Lösung: Sei $\alpha \in \text{Quot}(K[Z]/\mathfrak{p})$. Dann existieren $f, g \in K[Z]/\mathfrak{p}$ mit

$$\alpha = \frac{f}{g}$$
.

Da die Quotientenabbildung surjektiv ist, existieren Polynome $\tilde{f}, \tilde{g} \in K[Z]$, mit

$$\tilde{f} \equiv f \pmod{\mathfrak{p}}$$

und

$$\tilde{g} \equiv g \pmod{\mathfrak{p}}.$$

Nun haben die Polynome \tilde{f} und \tilde{g} nur endlich viele Monome, also existiert eine endliche Untermenge $Z_0 \subseteq Z$ mit $\tilde{f}, \tilde{g} \in K[Z_0]$. Die obige Gleichung impliziert $\alpha \in K(z:z \in Z_0)$. Also reicht es aus zu beweisen, dass jedes $z_u^{(m)}$ algebraisch über K ist, weil dann liegt α in einer endlichen Erweiterung von K.

Die Vieta-Relationen (siehe Serie 17, Aufgabe 87) implizieren

$$u(x) = \prod_{i} (x - z_u^{(i)})$$

in $(K[Z]/\mathfrak{p})[x]$. Insbesondere folgt nun

$$u(z_u^{(i)}) = 0$$

für alle i. Das Polynom u hat Koeffizienten in K, also ist $z_u^{(i)}$ algebraisch über K.

- 102. Sei L:K eine beliebige Körpererweiterung. Die Menge \tilde{K} aller über K algebraischen Elemente von L heisst der (relative) algebraische Abschluss von K in L. Zeigen Sie:
 - (a) \tilde{K} ist der eindeutige grösste Zwischenkörper von L:K, der algebraisch über K ist.
 - (b) Ist L algebraisch abgeschlossen, so ist \tilde{K} ein algebraischer Abschluss von K im Sinne der Vorlesung.
 - (c) Gilt die Folgerung in (b) auch im Fall $\mathbb{R} : \mathbb{Q}$ (d.h. für $L = \mathbb{R}$ und $K = \mathbb{Q}$)?
 - (d) Seien $\overline{\mathbb{Q}}$ der algebraische Abschluss von \mathbb{Q} in \mathbb{C} , und $\overline{\mathbb{Q}}^+$ der algebraische Abschluss von \mathbb{Q} in \mathbb{R} . Zeige $[\overline{\mathbb{Q}}:\overline{\mathbb{Q}}^+]=2$.

Lösung: (a) Gemäss Vorlesung liegen Summe, Differenz, Produkt und (sofern definiert) Quotient zweier Elemente aus \tilde{K} in \tilde{K} , also ist \tilde{K} ein Zwischenkörper der Erweiterung L:K. Die Körpererweiterung $\tilde{K}:K$ ist nach Konstruktion algebraisch, denn jedes Element aus \tilde{K} ist algebraisch über K. Weiters ist jedes Element aus $L\setminus \tilde{K}$ transzendent über K, weshalb jeder echte Oberkörper von \tilde{K} in L transzendente Elemente enthält. Somit ist \tilde{K} der eindeutige grösste über K algebraische Zwischenkörper von L:K.

- (b) Sei $f \in K[X]$ ein nichtkonstantes Polynom. Da L algebraisch abgeschlossen ist, hat f eine Nullstelle a in L. Als Nullstelle von f ist a algebraisch über K und liegt deshalb in \tilde{K} . Somit hat jedes nichtkonstante Polynom in K[X] eine Nullstelle in \tilde{K} . Weiters ist die Körpererweiterung $\tilde{K}:K$ gemäss (a) algebraisch. Also ist \tilde{K} ein algebraischer Abschluss von K.
- (c) Das Polynom $X^2+1\in\mathbb{Q}[X]$ hat keine Nullstelle in \mathbb{R} , also ist $\mathbb{Q}\subset\mathbb{R}$ nicht algebraisch abgeschlossen und somit kein algebraischer Abschluss von \mathbb{Q} .
- (d) Nach Konstruktion ist

$$\overline{\mathbb{Q}}^+ = \{x \in \mathbb{R} : x \text{ algebraisch "uber } \mathbb{Q}\} = \overline{\mathbb{Q}} \cap \mathbb{R}.$$

Wegen (c) gilt $i \in \overline{\mathbb{Q}} \backslash \overline{\mathbb{Q}}^+$, insbesondere ist $\overline{\mathbb{Q}}^+ \neq \overline{\mathbb{Q}}$. Betrachte nun ein beliebiges $z \in \overline{\mathbb{Q}} \backslash \overline{\mathbb{Q}}^+$. Dann ist das konjugiert komplexe \overline{z} eine weitere Nullstelle des Minimalpolynoms von z über \mathbb{Q} und liegt daher ebenfalls in $\overline{\mathbb{Q}}$. Somit liegen auch $r_1 := \operatorname{Re}(z) = (z + \overline{z})/2$ und $r_2 := \operatorname{Im}(z) = (z - \overline{z})/2i$ in $\overline{\mathbb{Q}}$. Da nun r_1 und r_2 reell und algebraisch über \mathbb{Q} sind, liegen r_1 und r_2 somit in $\overline{\mathbb{Q}}^+$. Wegen $z = r_1 + i \cdot r_2$, ist die Menge $\{1, i\}$ also eine $\overline{\mathbb{Q}}^+$ -Basis von $\overline{\mathbb{Q}}$. Somit ist $[\overline{\mathbb{Q}}:\overline{\mathbb{Q}}^+] = 2$.

- 103. Sei p eine Primzahl. In dieser Aufgabe konstruieren wir einen algebraischen Abschluss von \mathbb{F}_p ohne das Primidealtheorem zu verwenden.
 - (a) Konstruieren Sie für jedes $n \ge 1$ einen Körperhomomorphismus

$$\varphi_n \colon \mathbb{F}_{p^{n!}} \to \mathbb{F}_{p^{(n+1)!}}.$$

(b) Für $n \ge m$ definieren wir nun die Abbildung

$$\varphi_{mn}\colon \mathbb{F}_{p^{m!}}\to \mathbb{F}_{p^{n!}}$$

als die Verknüpfung $\varphi_{n-1}\varphi_{n-2}\cdots\varphi_m$ wobei $\varphi_{nn}=\mathrm{id}.$ Wir definieren die Quotientenmenge

$$\overline{\mathbb{F}}_p := \left(\bigsqcup_{i=1}^{\infty} \mathbb{F}_{p^{n!}} \right) \bigg/ \sim$$

wobei \sim folgende Äquivalenzrelation ist: Sei $x \in \mathbb{F}_{p^{n!}}$ und $y \in \mathbb{F}_{p^{m!}}$. Dann gilt $x \sim y$ dann und nur dann falls für alle $N \geqslant \max(n,m)$ die Gleichung $\varphi_{nN}(x) = \varphi_{mN}(y)$ gilt. Konstruieren Sie eine Addition und eine Multiplikation auf $\overline{\mathbb{F}}_p$.

- (c) Nehmen Sie an, dass die Menge $\overline{\mathbb{F}}_p$ mit Ihrer Addition und Multiplikation ein kommutativer Ring ist. Beweisen Sie, dass $\overline{\mathbb{F}}_p$ ein Körper ist.
- (d) Beweisen Sie, dass $\overline{\mathbb{F}}_p$ ein algebraischer Abschluss von \mathbb{F}_p ist.

Lösung:

(a) Sei $n \ge 1$. Wir betrachten den Unterkörper

$$k := \{x \in \mathbb{F}_{p^{(n+1)!}} : x^{p^{n!}} = x\}.$$

Dies ist ein Unterkörper weil die Frobeniusabbildung ein Körperhomomorphismus ist. Die Elemente dieses Körpers sind genau die Nullstellen von $X^{p^{n!}}-X$. Dieses Polynom teilt $X^{p^{(n+1)!}}-X$, also hat der Körper k genau $p^{n!}$ Elemente. Nun erhalten wir aus Aufgabe 91 (b), Serie 18 einen Isomorphismus

$$\mathbb{F}_{p^{n!}} \to k$$
.

Wir verknüpfen diesen Isomorphismus mit der natürlichen Inklusion $k \to \mathbb{F}_{p^{(n+1)!}}$ und erhalten so den gewünschten Körperhomomorphismus

$$\varphi_n \colon \mathbb{F}_{p^{n!}} \to \mathbb{F}_{p^{(n+1)!}}.$$

(b) Sei $0 \in \mathbb{F}_p$ und $1 \in \mathbb{F}_p$ das Null- und Einselement. Die Äquivalenzklassen dieser Elemente in $\overline{\mathbb{F}}_p$ bezeichnen wir mit [0] und [1].

Sei $x_0 \in \overline{\mathbb{F}}_p$ und $y_0 \in \overline{\mathbb{F}}_p$. Dann existieren $n, m \geqslant 1$, $x \in \mathbb{F}_{p^{n!}}$, $y \in \mathbb{F}_{p^{m!}}$, so dass $x_0 = [x]$ und $y_0 = [y]$. Dann existiert $N \geqslant 1$, so dass $N \geqslant n$ und $N \geqslant m$. Wir definieren

$$x_0 + y_0 := [\varphi_{nN}(x) + \varphi_{mN}(y)]$$

und

$$x_0 \cdot y_0 := [\varphi_{nN}(x) \cdot \varphi_{mN}(y)].$$

Wir beweisen nun, dass die Addition wohldefiniert ist. Für die Multiplikation kann man ähnlich argumentieren. Zuerst beweisen wir, dass die obige Definition nicht von der Wahl von N abhängig ist. Sei $N' \ge N$, dann gilt

$$[\varphi_{nN}(x) + \varphi_{mN}(y)] = [\varphi_{NN'}(\varphi_{nN}(x) + \varphi_{mN}(y))] = [\varphi_{nN'}(x) + \varphi_{mN'}(y)].$$

Also können wir bei fixierten Räpresentaten x und y die Zahl N beliebig gross wählen. Seien $\tilde{x} \in \mathbb{F}_{p^{\tilde{n}!}}$, $\tilde{y} \in \mathbb{F}_{p^{\tilde{m}!}}$ mit $x_0 = [\tilde{x}]$ und $y_0 = [\tilde{y}]$. Wir wählen ein $N \geqslant 1$ mit $N \geqslant \max(m,n,\tilde{m},\tilde{n})$. Dann gilt $\varphi_{nN}(x) = \varphi_{\tilde{n}N}(\tilde{x})$ und $\varphi_{mN}(y) = \varphi_{\tilde{m}N}(\tilde{y})$ nach Definition der Äquivalenzrelation. Also erhalten wir nun

$$[\varphi_{nN}(x) + \varphi_{mN}(y)] = [\varphi_{\tilde{n}N}(\tilde{x}) + \varphi_{\tilde{m}N}(\tilde{y})].$$

Dies besagt, dass die Definition der Addition unabhängig von den gewählten Repräsentanten x und y ist. Also sind die Addition und die Multiplikation wohldefiniert.

(c) Sei $x \in \overline{\mathbb{F}}_p$ ein Element mit $x \neq [0]$. Dann existiert $n \geqslant 1$ und $y \in \mathbb{F}_{p^{n!}}$, so dass x = [y]. Nun kann nicht y = 0 gelten, weil dies würde x = [0] implizieren. Nun gilt

$$x[y^{-1}] = [yy^{-1}] = [1].$$

Also ist $\overline{\mathbb{F}}_p$ ein Körper.

(d) Wir haben Abbildungen

Nun gilt

$$i_n \colon \mathbb{F}_{p^{n!}} \to \overline{\mathbb{F}}_p, \ x \mapsto [x].$$

Nach der Definition der Addition, der Multiplikation, und dem Einselement sind diese Abbildungen Körperhomomorphismen. Insbesondere ist $\overline{\mathbb{F}}_p$ eine Erweiterung von \mathbb{F}_p . Um zu beweisen, dass $\overline{\mathbb{F}}_p$ ein algebraisch abgeschlossener Körper ist, reicht es aus zu beweisen, dass dieser algebraisch über \mathbb{F}_p ist und dass das Polynom $X^{p^n}-X$ über $\overline{\mathbb{F}}_p$ mindestens p^n verschiedene Nullstellen hat. Dies folgt aus Aufgabe 95 (b), Serie 18. Sei $x_0 \in \overline{\mathbb{F}}_p$. Dann existiert $n \geqslant 1$ und $x \in \mathbb{F}_{p^n}$! mit $x_0 = [x]$. Also gilt $x^{p^{n!}}-x=0$.

$$x_0^{p^{n!}} - x_0 = [x^{p^{n!}} - x] = [0].$$

Also ist dies eine algebraische Erweiterung.

Das Polynom $X^{p^n}-X$ zerfällt über $\mathbb{F}_{p^{n!}}$ und der Körperhomomorphismus i_n bildet eine Nullstelle des Polynoms auf eine Nullstelle des Polynoms ab. Also hat das Polynom p^n Nullstellen in $\overline{\mathbb{F}}_p$, da es p^n verschiedene Nullstellen in $\mathbb{F}_{p^{n!}}$ hat und i_n injektiv ist.