Serie 23

HAUPTSATZ DER GALOISTHEORIE I

- 115. Sei L der Zerfällungskörper von X^4-4 über $\mathbb Q$. Bestimmen Sie alle Zwischenkörper K mit $\mathbb Q \subsetneq K \subsetneq L$.
- 116. Sei $f \in K[X]$ irreduzibel und separabel und sei L ein Zerfällungskörper von f über K. Zeigen Sie: Falls die Galois-Gruppe Gal(L:K) abelsch ist, dann ist L=K(a) für eine beliebige Nullstelle $a \in L$ von f.
- 117. Sei L_f der Zerfällungskörper von $f = X^3 3$ über \mathbb{Q} .
 - (a) Beweisen Sie: $L_f = \mathbb{Q}(\sqrt[3]{3}, \sqrt{3}i)$.
 - (b) Finden Sie ein $\alpha \in L_f$ mit $\mathbb{Q}(\alpha) = L_f$ und bestimmen Sie das Minimalpolynom von α über \mathbb{Q} .
 - (c) Finden Sie einen Zwischenkörper $\mathbb{Q} \subseteq M \subseteq L_f$ mit $Gal(L_f : M) \cong C_2$.
- 118. Sei L_f der Zerfällungskörper von $f = X^5 1$ über \mathbb{Q} .
 - (a) Bestimmen Sie $Gal(L_f : \mathbb{Q})$.
 - (b) Bestimmen Sie alle Zwischenkörper M mit $\mathbb{Q} \subsetneq M \subsetneq L_f$.
 - (c) Sei $\xi := e^{\frac{2\pi i}{5}}$. Bestimmen Sie das Minimalpolynom von $\xi + \xi^4$ über \mathbb{Q} .