D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem sheet 3

Problem 1

Show that the rotation number of a homeomorphis of \mathbb{T} only depends on the conjugacy class, i.e., suppose that $T_1, T_2, h: \mathbb{T} \to \mathbb{T}$ are homeomorphisms such that

$$\begin{array}{c} \mathbb{T} \xrightarrow{T_1} \mathbb{T} \\ h \\ \downarrow \\ \mathbb{T} \xrightarrow{T_2} \mathbb{T} \end{array}$$

commutes, then $\rho(T_1) = \rho(T_2)$.

Problem 2

Let $\alpha \in \mathbb{T} \setminus \mathbb{Q}/\mathbb{Z}$ and consider the circle rotation $R_{\alpha} \colon \mathbb{T} \to \mathbb{T}$. Let $h \colon \mathbb{T} \to \mathbb{T}$ be a homeomorphism such that

$$\begin{array}{c} \mathbb{T} \xrightarrow{R_{\alpha}} \mathbb{T} \\ \left| h & h \right| \\ \mathbb{T} \xrightarrow{R_{\alpha}} \mathbb{T} \end{array}$$

commutes. Show that

$$\exists \beta \in \mathbb{T} \forall x \in \mathbb{T} \quad h(x) = x + \beta.$$

Problem 3

Let $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, and $T_A \colon \mathbb{T}^2 \to \mathbb{T}^2$ be given by

$$\forall x \in \mathbb{T}^2 \quad T_A(x) = xA + \mathbb{Z}^2.$$

Show that the set of periodic points is countably infinite.

Hint: Given $n \in \mathbb{N}$, look at the map $A^n - \mathrm{id}_2$ to deduce countability. To show infinity, note that A^n maps rational points of denominator q to rational points of denominator q. Then use the pigeonhole principle.

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem 4

Let X be a compact metric space and let $T: X \to X$ continuous. We say that T is topologically weak mixing if the map

$$T \times T \colon X \times X \longrightarrow X \times X,$$
$$(x_1, x_2) \longmapsto (T(x_1), T(x_2))$$

is topologically transitive.

- a. Prove that if T is topologically weak mixing, then T is topologically transitive.
- b. Suppose that T is a topologically mixing homeomorphism. Show that T is topologically weak mixing.

Problem 5

Let (X, d) be a compact metric space, $T: X \to X$ a homeomorphism. A non-zero function $f \in C(X)$ is an *eigenfunction for* T if there exists $\lambda \in \mathbb{C}$ (the *eigenvalue*) such that

$$\forall x \in X \quad f(Tx) = \lambda f(x).$$

- a. Suppose that $f \in C(X)$ is an eigenfunction with eigenvalue λ . Show that $|\lambda| = 1$.
- b. Suppose that T is topologically transitive and suppose that $f \in C(X)$ is an eigenfunction. Show that |f| is constant.
- c. Suppose that T is topologically transitive and suppose that $f, g \in C(X)$ are eigenfunctions with the same eigenvalue. Show that there is $c \in \mathbb{C}$ such that f = cg.
- d. Suppose that T is topologically transitive. Show that any $\mathcal{F} \subseteq C(X)$ consisting of eigenfunctions for pairwise distinct eigenvalues is linearly independent.
- e. Suppose that T is topologically transitive. Prove that the eigenvalues of T form a countable subgroup of S^1 .

Hint: C(X) contains a countable dense set.

f. Let $x_0 \in X$ and define a map

$$: \mathcal{O}(x_0) \times \mathcal{O}(x_0) \longrightarrow \mathcal{O}(x_0), (T^m x_0, T^n x_0) \longmapsto T^{m+n}(x_0).$$

Show that * is well-defined and that $(\mathcal{O}(x_0), *, x_0)$ is a group.

We recall that a compact space G is a compact group if there exist $e \in G$ and a pair of continuous maps $m: G \times G \to G$ and $i: G \to G$ such that (G, m, e) is a group with $g^{-1} = i(g)$ for all $g \in G$. Given a compact group G with a metric d and an element $g \in G$, we denote by (G, R_g) the topological dynamical system defined by

$$\forall g' \in G \quad R_g(g') = gg'.$$

The system (G, R_g) is called a group rotation.

f. Suppose that T is topologically transitive and an isometry, i.e.,

$$\forall x, y \in X \quad d(Tx, Ty) = d(x, y).$$

Show that (X, T) is conjugate to a minimal group rotation on a compact metric abelian group.

Problem 6

This exercise uses the Stone–Weierstrass theorem. Let $T: \mathbb{T} \to \mathbb{T}$ be a homeomorphism. Show that the following are equivalent.

- a. T is topologically conjugate to an irrational rotation.
- b. T is topologically transitive and has topological discrete spectrum, i.e., the eigenfunction of T span a dense subspace of $C(\mathbb{T})$.

Hint: Let $\{\lambda_n : n \in \mathbb{N}\}$ be the set of eigenvalues of T and for every $n \in \mathbb{N}$ let $f_n \in C(\mathbb{T})$ non-zero such that $f_n \circ T = \lambda_n f_n$ and $||f_n||_{\infty} = 1$. Show that

$$\overline{\mathbf{d}}(x,y) = \sum_{n \in \mathbb{N}} \frac{|f_n(x) - f_n(y)|}{2^n}$$

defines a metric inducing the usual topology on \mathbb{T} . For this you can use the statement that a continuous map from a compact space to a Hausdorff space is a homeomorphism.