D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem sheet 5

Problem 1

In this exercise we want to compute the actual growth rate of the complexity function for a vertex shift. The necessary input is the so-called Perron– Frobenius theorem. To this end, we introduce a bit of notation. A matrix $A \in \operatorname{Mat}_{r,s}(\mathbb{R})$ is non-negative if $A_{ij} \geq 0$ for all $1 \leq i \leq r$ and for all $1 \leq j \leq s$. A vector $v \in \mathbb{R}^d$ is positive if $v_j > 0$ for all $1 \leq j \leq d$. A non-negative matrix $A \in \operatorname{Mat}_d(\mathbb{R})$ is irreducible if for all $1 \leq i, j \leq d$ there exists $n \in \mathbb{N}$ such that $A_{ij}^n \neq 0$. Finally, we denote by $\|\cdot\|_1$ the L¹-norm on \mathbb{R}^d and by $\Delta^{d-1} \subseteq \mathbb{R}^d$ the set of non-negative vectors in the $\|\cdot\|_1$ -unit sphere, i.e.,

 $\Delta^{d-1} = \{ v \in \mathbb{R}^d : v \text{ non-negative and } \|v\|_1 = 1 \}.$

A subset $\mathcal{P} \subseteq \mathbb{R}^d$ is a *polytope* if it is the convex hull of a finite subset $S \subseteq \mathbb{R}^d$, i.e., if there is $S \subseteq \mathbb{R}^d$ finite such that

$$\mathcal{P} = \left\{ \sum_{i=1}^{r} t_i s_i \colon r \in \mathbb{N}, s_1, \dots, s_r \in S, t_1, \dots, t_r \in [0, 1], t_1 + \dots + t_r = 1 \right\}.$$

In particular, Δ^{d-1} is the polytope defined by the standard basis of \mathbb{R}^d .

- a. Suppose that $A \in \operatorname{Mat}_d(\mathbb{R})$ is non-zero non-negative. Suppose that $v \in \mathbb{R}^d$ is a positive eigenvector with eigenvalue $\lambda \in \mathbb{C}$. Show that $\lambda \in (0, \infty)$.
- b. Suppose that $\mathcal{G} = (V, E)$ is a graph with adjacency matrix $A_{\mathcal{G}}$ and suppose that $A_{\mathcal{G}}$ has a positive eigenvector with eigenvalue $\lambda_{\mathcal{G}}$. Suppose that $X_{\mathcal{G}}$ is non-empty. Show that $h_{\text{top}}(X_{\mathcal{G}}, \sigma) = \log \lambda_{\mathcal{G}}$.
- c. Suppose that $A \in \operatorname{Mat}_d(\mathbb{R})$ is non-zero non-negative and suppose that $v, w \in \mathbb{R}^d$ are positive eigenvectors for respective eigenvalues $\lambda, \mu \in \mathbb{C}$. Show that $\lambda = \mu$, i.e., there exists at most one eigenvalue corresponding to a positive eigenvector.
- d. Suppose that $A \in \operatorname{Mat}_d(\mathbb{R})$ is non-zero non-negative and suppose that $v \in \mathbb{R}^d$ is a positive eigenvector for eigenvalue λ . Let $\mu \in \mathbb{C}$ be an eigenvalue of A. Show that $|\mu| \leq \lambda$.

Hint: Look at the growth of the L^1 -norm of eigenvectors under application of A.

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

- e. Suppose that $A \in \operatorname{Mat}_d(\mathbb{R})$ is positive (as an element of \mathbb{R}^{d^2}) and $v \in \mathbb{R}^d$ is a non-negative eigenvector of A. Show that v is positive.
- f. Suppose that $A \in Mat_d(\mathbb{R})$ is positive. Show that the map

$$\overline{A} \colon \Delta^{d-1} \longrightarrow \Delta^{d-1}$$

$$v \longmapsto \frac{Av}{\|Av\|_1}$$

is well-defined and continuous.

- g. An element v in a polytope $\mathcal{P} \subseteq \mathbb{R}^d$ is *extremal* if v can not be expressed as a non-trivial convex combination of elements in \mathcal{P} . Given a polytope $\mathcal{P} \subseteq \mathbb{R}^d$, show that the number of extremal points in \mathcal{P} is finite.
- h. Let $\mathcal{P} \subseteq \mathbb{R}^d$ be a polytope and let $\mathcal{E}(\mathcal{P})$ the subset of extremal points. Show that \mathcal{P} is the convex hull of $\mathcal{E}(\mathcal{P})$.
- i. Suppose that $A \in \operatorname{Mat}_d(\mathbb{R})$ is positive. Given $m \in \mathbb{N} \cup \{0\}$, let $\mathcal{D}_m = \overline{A}^m(\Delta^{d-1})$. Show that $\mathcal{D}_{\infty} = \bigcap_{m \geq 0} \mathcal{D}_m$ is a polytope and $\overline{A}(\mathcal{D}_{\infty}) = \mathcal{D}_{\infty}$.
- j. Show that $\overline{A}(\mathcal{E}(\mathcal{D}_{\infty})) = \mathcal{E}(\mathcal{D}_{\infty}).$
- k. Let $a_1, \ldots, a_d > 0$. Show that the matrix

$$A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{d-1} \\ a_d & 0 & 0 & \cdots & 0 \end{pmatrix}$$

is irreducible and admits a positive eigenvector.

l. For $v, w \in \Delta^d$, denote

$$K(v, w) = \sup \left\{ \lambda \in \mathbb{R} \colon v - \lambda w \text{ is non-negative.} \right\}$$

and define

$$\rho \colon \Delta^d \times \Delta^d \longrightarrow \mathbb{R}$$
$$(v, w) \longmapsto -\log K(v, w) - \log K(w, v).$$

Show that ρ defines a metric on the interior of Δ^d (which coincides with that positive vectors in Δ^d).

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

m. Let $A \in \operatorname{Mat}_d(\mathbb{R})$ positive. Show that \overline{A} is a strict contraction on the interior of Δ^d , i.e.,

 $\forall v, w \in \operatorname{int}(\Delta^{d-1}) \quad v \neq w \implies \rho(\overline{A}v, \overline{A}w) < \rho(v, w).$

- n. Let $A \in \operatorname{Mat}_d(\mathbb{R})$ positive. Show that there exists a positive eigenvector and that it is unique up to scaling, i.e., the corresponding eigenvalue has algebraic multiplicity one.
- o. Let $A \in \operatorname{Mat}_d(\mathbb{R})$ non-negative and aperiodic. Show that there exists a positive eigenvector and that it is unique up to scaling.
- p. Let $A \in Mat_d(\mathbb{R})$ non-negative and irreducible. Show that there exists a positive eigenvector and that it is unique up to scaling.

Hint: Look at $A + id_d$.

q. Let \mathcal{G} be an aperiodic graph with associated non-empty two-sided vertex shift X. Given $n \in \mathbb{N}$, let $\operatorname{Per}_n(X, \sigma_X) \subseteq X$ denote the points of period dividing n. Show that

$$h_{ ext{top}}(X, \sigma_X) = \lim_{n \to \infty} \frac{\log |\operatorname{Per}_n(X, \sigma_X)|}{n}.$$

Problem 2

Show that the following are probability measure preserving systems.

- a. $(\mathbb{T}, \mathcal{B}(\mathbb{T}), \text{Leb}, R_{\alpha})$, where $\alpha \in \mathbb{R}$ and $R_{\alpha} \colon \mathbb{T} \to \mathbb{T}$ is the rotation by α .
- b. $(\mathbb{T}, \mathcal{B}(\mathbb{T}), \text{Leb}, T_p)$, where $p \in \mathbb{Z} \setminus \{0\}$ and $T_p \colon \mathbb{T} \to \mathbb{T}$ denotes the multiplication by p.
- c. $(G, \mathcal{B}(G), m_G, \varphi)$, where G is a compact metric group, m_G is the Haar probability measure on G, and $\varphi: G \to G$ is a surjective continuous group homomorphism.
- d. $(X, \mathcal{B}(X), \mu, T)$, where $X = [0, 1), \mu$ is the measure defined by

$$\forall B \in \mathcal{B}(X) \quad \mu(B) = \frac{1}{\log 2} \int_B \frac{\mathrm{d}x}{1+x}$$

and $T: X \to X$ is the map defined by T(0) = 0 and

$$\forall x \in X \setminus \{0\} \quad T(x) = \left\{\frac{1}{x}\right\}.$$