Problem sheet 8

Problem 1

Let (X, d) be a compact metric space and $\mathcal{B} = \mathcal{B}(X)$ the Borel σ -algebra on X. Let $T: X \to X$ measurable.

- a. Let $\mathcal{M}^T(X)$ be the set of *T*-invariant probability measures. Show that $\mathcal{M}^T(X)$ is convex.
- b. Let $\mu \in \mathcal{M}^T(X)$ and suppose that μ is an extreme point, i.e., for all distinct $\mu_1, \mu_2 \in \mathcal{M}^T(X)$ and for all $t \in [0, 1]$ we have

$$\mu = t\mu_1 + (1-t)\mu_2 \implies t \in \{0,1\}.$$

Show that μ is ergodic.

Hint: Argue by contradiction, i.e., suppose that μ admits an invariant set $B \in \mathcal{B}$ such that $\mu(B)(1 - \mu(B)) \neq 0$.

c. Let $\mu \in \mathcal{M}^T(X)$. Suppose that μ is ergodic. Show that μ is an extreme point.

Hint: Suppose that $t \in (0, 1)$ and $\mu_1, \mu_2 \in \mathcal{M}^T(X)$ are distinct and

$$\mu = t\mu_1 + (1-t)\mu_2.$$

Let $f \in L^1(X, \mathcal{B}, \mu)$ be the Radon–Nikodym derivative of μ_1 with respect to μ and $B = \{f < 1\}$. Show that $B \in \mathcal{E}_{T,\mu}$.

Problem 2

Let $p \in \mathbb{N} \setminus \{1\}$, $A = \{0, \dots, p-1\}$, $X = A^{\mathbb{N}}$, $\mathcal{B} = \mathcal{B}(X)$.

- a. Let μ be a shift-invariant ergodic probability measure on (X, \mathcal{B}) . Show that there exists a sequence $(\nu_n)_{n \in \mathbb{N}}$ of shift-invariant probability measures such that the following are true.
 - For every $n \in \mathbb{N}$, ν_n assigns full measure to the orbit of a single periodic point.
 - $\lim_{n\to\infty} \nu_n = \mu$ in the weak-* topology, i.e.,

$$\forall f \in \mathcal{C}(X) \colon \lim_{n \to \infty} \nu_n(f) = \mu(f).$$

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

- b. Let $m \in \mathbb{N}$ and μ_1, \ldots, μ_m be shift-invariant ergodic probability measures on (X, \mathcal{B}) . Let $(t_1, \ldots, t_m) \in \mathbb{R}^m$ be a probability vector. Show that there exists a sequence $(\nu_n)_{n \in \mathbb{N}}$ of shift-invariant probability measures such that the following are true.
 - For every $n \in \mathbb{N}$, ν_n assigns full measure to the orbit of a single periodic point.
 - $\lim_{n\to\infty} \nu_n = \sum_{k=1}^m t_k \mu_k$ in the weak-* topology.

Problem 3

Let (X, d) be a compact metric space and $T: X \to X$ be a continuous map.

a. Two *T*-invariant Borel probability measures μ, ν are called *(mutually)* singular if there exists $A \in \mathcal{B}(X)$ such that

$$\mu(A) = 1$$
 and $\nu(A) = 0$.

Show that if $\mu \neq \nu$ are ergodic, then they are mutually singular.

b. Let μ, ν be *T*-invariant Borel probability measures. Suppose that there exists C > 0 so that

$$\forall f \in \mathcal{C}(X) \quad f \ge 0 \implies \int_X f \mathrm{d}\nu \le C \int_X f \mathrm{d}\mu$$

Show that ν is absolutely continuous with respect to μ .

Hint: Extend the estimate to indicator functions of open sets.

c. Suppose that μ is an ergodic *T*-invariant Borel probability measure on X and suppose that for every $x \in X$, there exists C(x) > 0 so that

$$\forall f \in \mathcal{C}(X) \quad f \ge 0 \implies \limsup_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} f(T^n x) \le C(x) \int_X f \mathrm{d}\mu.$$

Show that T is uniquely ergodic, i.e., μ is the unique T-invariant Borel probability measure on X.

Problem 4

Suppose that (X, d) is a compact metric space. Let $\mathcal{B} = \mathcal{B}(X)$, μ a Borel probability measure on X. Suppose that $T: X \to X$ is measurable and surjective and suppose that $T_*\mu = \mu$. Define

$$\tilde{X} = \left\{ (x_n)_{n \in \mathbb{Z}} \in X^{\mathbb{Z}} \colon \forall n \in \mathbb{Z} \colon x_{n+1} = T(x_n) \right\}.$$

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Let $\hat{\mathcal{B}}$ be the smallest σ -algebra containing all sets of the form

 $_{n}[E] = \left\{ (x_{n})_{n \in \mathbb{Z}} \in \tilde{X} \colon x_{n} \in E \right\} \quad (n \le 0, E \in \mathcal{B}).$

a. Show that there exists a unique probability measure $\tilde{\mu}$ on $(\tilde{X}, \tilde{\mathcal{B}})$ such that

$$\forall n \le 0 \forall E_n \in T^n \mathcal{B} \quad \tilde{\mu}(n[E_n]) = \mu(E_n).$$

Hint: Note that for $N \in \mathbb{N}$ and for every choice of $E_k \in T^{-k}\mathcal{B}$ $(0 \le k \le N)$ we have

$$\bigcap_{k=0}^{N} {}_{-k}[E_k] = \left\{ (x_n)_{n \in \mathbb{Z}} \in \tilde{X} : x_{-N} \in \bigcap_{k=0}^{N} T^{-(N-k)} E_{-k} \right\}$$

- b. Let $\tilde{T}: \tilde{X} \to \tilde{X}$ denote the left-shift. Show that $\tilde{T}_* \tilde{\mu} = \tilde{\mu}$.
- c. Show that $(\tilde{X}, \mathcal{B}, \tilde{\mu}, \tilde{T})$ is an invertible dynamical system and (X, \mathcal{B}, μ, T) is a factor.
- d. Show that $(\tilde{X}, \mathcal{V}, \tilde{\mu}, \tilde{T})$ is ergodic if and only if (X, \mathcal{B}, μ, T) is ergodic.
- e. Suppose that (Y, \mathcal{C}, ν, S) is an invertible dynamical system and suppose that (X, \mathcal{B}, μ, T) is a factor. Show that $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{T})$ is a factor of (Y, \mathcal{C}, ν, S) and deduce that this property characterizes $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{T})$ uniquely up to isomorphism.
- f. Let $p \in \mathbb{N}$, $A = \{0, \dots, p-1\}$, $X = A^{\mathbb{N}}$, $\mathcal{B} = \mathcal{B}(X)$. Let $(p^{(\ell)})_{\ell \in \mathbb{N} \cup \{0\}}$ be a sequence of maps $p^{(\ell)} \colon A^{\ell+1} \to [0, 1]$ satisfying

$$p^{(0)}(0) + \dots + p^{(0)}(p-1) = 1$$

and

$$\forall \ell \in \mathbb{N} \forall (a_0, \dots, a_\ell) \quad p^{(\ell)}(a_0, \dots, a_\ell) = \sum_{a \in A} p^{(\ell+1)}(a_0, \dots, a_\ell, a).$$

Let $\mu_{\mathbb{N}}$ be the probability measure on (X, \mathcal{B}) uniquely determined by the requirement that for all $q \in \mathbb{N}, \ell \in \mathbb{N} \cup \{0\}, \underline{a} = (a_0, \ldots, a_\ell) \in A^{\ell+1}$ we have

$$\mu_{\mathbb{N}}\big(\{(x_n)_{n\in\mathbb{N}}\in X\colon \forall 0\leq k\leq \ell\, x_{q+k}=a_k\}\big)=p^{(\ell)}(\underline{a}).$$

Similarly, one defines the Borel probability measure $\mu_{\mathbb{Z}}$ on $(A^{\mathbb{Z}}, \mathcal{B}(A^{\mathbb{Z}}))$ by letting q vary in \mathbb{Z} . Let $\sigma_+: X \to X$ the left-shift on X. Show that

$$(A^{\mathbb{Z}}, \mathcal{B}(A^{\mathbb{Z}}), \mu_{\mathbb{Z}}, \sigma) = (\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}_{\mathbb{N}}, \widetilde{\sigma_{+}}),$$

where σ denotes the left-shift on $A^{\mathbb{Z}}$.