Problem sheet 1

Problem 1

Let

$$\begin{split} T\colon [0,1] &\longrightarrow [0,1], \\ x &\longmapsto \begin{cases} 0 & \text{if } x \in \{0,1\}, \\ nx-1 & \text{if there is } n \in \mathbb{N} \text{ so that } x \in [\frac{1}{n},\frac{1}{n-1}). \end{cases} \end{split}$$

a. Let $x \in [0, 1]$. Show that

$$\exists \ell \in \mathbb{N} \quad T^{\ell}(x) = 0 \iff x \in [0, 1] \cap \mathbb{Q}.$$

b. Show that $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ is irrational.

Problem 2

Let $T_p: \mathbb{T} \to \mathbb{T}$ be the $\times p$ -map.

a. Show that there exists $x \in \mathbb{T}$ with $\omega^+(x)$ uncountable but not \mathbb{T} , where

$$\omega^+(x) = \left\{ y \in \mathbb{T} \colon \exists (n_k)_{k \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}} \text{ unbounded}, \ y = \lim_{k \to \infty} T_p^{n_k}(x) \right\}.$$

b. Let $x_0 = \sum_{k=1}^{\infty} \frac{1}{p^{k!}}$ show that $\omega^+(x_0)$ is countable but not finite.

Problem 3

Let A be a 2×2 real matrix with eigenvalues $\lambda \in (1, \infty)$ and $\mu \in (0, 1)$. Consider the map

$$\begin{split} T\colon S^1 & \longrightarrow S^1, \\ x & \longmapsto \frac{Ax}{\|Ax\|_2} \end{split}$$

- a. Show that T has exactly four fixed points.
- b. Show that $T^n x = \frac{A^n x}{\|A^n x\|_2}$.
- c. Show that for every $x \in S^1$, the sequence $T^n x$ converges to a fixed point of T.

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem 4

Let $p \ge 2$ and

$$X = \prod_{i=1}^{\infty} \{0, ..., p-1\}.$$

Define

$$N: X \times X \longrightarrow \mathbb{N} \cup \infty,$$
$$(x, y) \longmapsto \inf\{n \in \mathbb{N}: x_n \neq y_n\}$$

and

$$\begin{split} d \colon X \times X & \longrightarrow [0, \infty), \\ (x, y) & \longmapsto \begin{cases} 0 & \text{if } x = y, \\ \left(\frac{1}{2}\right)^{N(x, y)} & \text{else.} \end{cases} \end{split}$$

Then d defines a metric on X and we equip X with the topology generated by the open balls with respect to the metric d.

Let $\sigma \colon X \to X$ be the left-shift, i.e.,

$$\forall x \in X \forall n \in \mathbb{N} \quad \sigma(x)_n = x_{n+1}.$$

a. Let $(x^{(\ell)})_{\ell \in \mathbb{N}} \in X^{\mathbb{N}}$. Show that $x^{(\ell)} \to x^{(1)}$ as $\ell \to \infty$ if and only if

$$\forall n \in \mathbb{N} \exists \ell_0 \in \mathbb{N} \forall \ell \ge \ell_0 \quad x_n^{(\ell)} = x_n^{(1)}.$$

- b. Show that X is sequentially compact: Every sequence $(x^{(\ell)})_{\ell \in \mathbb{N}} \in X^{\mathbb{N}}$ has a converging subsequence.
- c. Determine the number of σ -periodic points of period n.
- d. Show that the set of σ -periodic points is dense in X.