D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem sheet 11

Problem 1

Let (X, d) be a compact metric space continuous, and $\{f_n : n \in \mathbb{N}\} \subseteq C(X) \setminus \{0\}$ dense. Show that the metric

$$D: \mathcal{M}_1(X)^2 \longrightarrow [0, \infty),$$
$$(\mu, \nu) \longmapsto \sum_{n \in \mathbb{N}} \frac{|\mu(f_n) - \nu(f_n)|}{2^n ||f_n||_{\infty}}$$

induces the weak-* topology on $\mathcal{M}_1(X)$.

Problem 2

Let (X, d) be a compact metric space, $T: X \to X$ continuous, and $\mu \in \mathcal{M}_1^T(X)$.

a. Show that μ is ergodic if and only if

$$\forall \nu \in \mathcal{M}_1(X) \quad \nu \ll \mu \implies \frac{1}{N} \sum_{n=0}^{N-1} T^n {}_*\nu \stackrel{N \to \infty}{\longrightarrow} \mu.$$

b. Show that μ is mixing if and only if

$$\forall \nu \in \mathcal{M}_1(X) \quad \nu \ll \mu \implies T^n * \nu \stackrel{n \to \infty}{\longrightarrow} \mu.$$

c. Show that μ is weak mixing if and only if there exists $J \subseteq \mathbb{N}$ such that

$$\forall \nu \in \mathcal{M}_1(X) \quad \nu \ll \mu \implies T^n * \nu \stackrel{n \to \infty}{\underset{n \notin J}{\longrightarrow}} \mu.$$

Problem 3

Let (X, d) a compact metric space and $T: X \to X$ continuous and $\mu \in \mathcal{M}_1^T(X)$. Show that μ is ergodic if and only if there exists $Y \in \mathcal{B}(X)$ such that $\mu(Y) = 1$ and

$$\forall x \in Y \quad \frac{1}{N} \sum_{n=0}^{N-1} \delta_{T^n x} \xrightarrow{N \to \infty} \mu.$$

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem 4

Let (X, d) a compact metric space and suppose that $T: X \to X$ and $\varphi: X \to \mathbb{T}$ are continuous maps. Denote by m the normalized (Lebesgue) Haar measure on \mathbb{T} . We let $\pi_X: X \times \mathbb{T} \to X$ and $\pi_{\mathbb{T}}: X \times \mathbb{T} \to \mathbb{T}$ denote the coordinate projections. Define

$$\hat{T} \colon X \times \mathbb{T} \longrightarrow X \times \mathbb{T},$$

$$(x,t) \longmapsto (Tx, t + \varphi(x));$$

the map \hat{T} is called the *skew-product* map

- a. Suppose that $\mu \in \mathcal{M}_1^T(X)$. Show that $\hat{\mu} = \mu \otimes m \in \mathcal{M}_1^{\hat{T}}(X \times \mathbb{T})$.
- b. Given $t \in \mathbb{T}$, let $\tau_t \colon \mathbb{T} \to \mathbb{T}$ denote translation by t, i.e., $\tau_t(s) = s + t$ for all $s \in \mathbb{T}$.
 - Let $t \in \mathbb{T}$ and $\nu \in \mathcal{M}_1^{\hat{T}}(X \times \mathbb{T})$. Show that $\nu_t = \tau_{t*} \nu \in \mathcal{M}_1^{\hat{T}}(X \times \mathbb{T})$.
- c. Given $\nu \in \mathcal{M}_1^{\hat{T}}(X \times \mathbb{T})$, define $\overline{\nu} = \int_{\mathbb{T}} \nu_t \mathrm{d}m(t)$ by

$$\forall f \in \mathcal{C}(X) \quad \overline{\nu}(f) = \int_{\mathbb{T}} \nu_t(f) \mathrm{d}m(t).$$

Show that $\overline{\nu} = {\pi_X}_* \nu \otimes m$.

d. Suppose T is uniquely ergodic and suppose that $\hat{\mu}$ is \hat{T} -ergodic. Show that \hat{T} is uniquely ergodic.

Problem 5

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Define

$$T_{\alpha} \colon \mathbb{T}^2 \longrightarrow \mathbb{T}^2,$$

(x, y) $\longmapsto (x + \alpha, y + x)$

a. Show that the Haar measure on \mathbb{T}^2 is T_{α} -ergodic.

Hint: Recall that any $f \in L^2(\mathbb{T}^2)$ admits a unique representation

$$f = \sum_{\mathbf{n} \in \mathbb{Z}^2} c_{\mathbf{n}} e_{\mathbf{n}},$$

where $c_{\mathbf{n}} \in \ell^2(\mathbb{Z}^2)$ and

$$\forall \mathbf{x} \in \mathbb{R}^2 \forall \mathbf{n} \in \mathbb{Z}^2 \quad e_{\mathbf{n}}(\mathbf{x} + \mathbb{Z}^2) = \exp\left(2\pi \mathrm{i} \langle \mathbf{n}, \mathbf{x} \rangle\right).$$

b. Show that $\{n^2 \alpha \colon n \in \mathbb{N}\}$ equidistributes in \mathbb{T} , i.e.,

$$\forall f \in \mathcal{C}(X) \quad \frac{1}{N} \sum_{n=1}^{N} f(n^2 \alpha) \stackrel{N \to \infty}{\longrightarrow} \int_0^1 f(t) \mathrm{d}t.$$

Hint: Let $\beta = 2\alpha$ and compute $T^n_{\beta}(\alpha, 0)$.

c. (Weyl) Let $p \in \mathbb{R}[X]$ a polynomial of degree at least 1 and such that $p' \notin \mathbb{Q}[X]$. Show that the sequence $\{p(n) + \mathbb{Z} : n \in \mathbb{N}\}$ equidistributes in the torus.

Hint: First, reduce to the case where $p = a_k X^k + \cdots + a_0$ with irrational leading coefficient a_k . Then proceed as follows. Let $\alpha = k!a_k$, look at the map $\Phi: \{\alpha\} \times \mathbb{T}^k \to \{\alpha\} \times \mathbb{T}^k$ given by

$$\Phi(\alpha, x_1, \dots, x_k) = (\alpha, x_1 + \alpha, x_2 + x_1, \dots, x_k + x_{k-1}),$$

and compute Φ^n .