Problem sheet 12

Problem 1

Let $\varphi \colon [0,1] \to [0,1]$ be given by

$$\varphi(x) = \begin{cases} 0 & \text{if } x = 0, \\ x \log x & \text{otherwise.} \end{cases}$$

a. Let $x, y, t \in [0, 1]$. Show that

$$\varphi(tx + (1-t)y) \ge t\varphi(x) + (1-t)\varphi(y)$$

with equality if and only if x = y or $t \in \{0, 1\}$.

b. Let $k \geq 2, x_1, \ldots, x_k \in [0, 1], t_1, \ldots, t_k \in [0, 1]$ such that $\sum_{i=1}^k t_i = 1$. Show that

$$\varphi\left(\sum_{i=1}^{k} t_i x_i\right) \ge \sum_{i=1}^{k} t_i \varphi(x_i)$$

with equality if and only if all x_i with $t_i > 0$ are equal, i.e.,

$$|\{x_i \colon 1 \le i \le k, t_i > 0\}| = 1.$$

c. Let (X, \mathcal{B}, μ) be a probability space and ξ a finite partition of (X, \mathcal{B}) . Show that

$$-\sum_{A\in\mathcal{E}}\varphi\big(\mu(A)\big)\leq \log|\xi|$$

with equality if and only if

$$\forall A \in \xi \quad \mu(A) = \frac{1}{|\xi|}.$$

Problem 2

Let (X, \mathcal{B}, μ) be a probability space and let ξ , η , and ζ be finite partitions of (X, \mathcal{B}) . Show that the following are true.

a.
$$\xi \prec \eta \implies I_{\mu}(\xi|\eta) = 0 \ \mu$$
-a.s.

b.
$$\xi \prec \eta \implies H_{\mu}(\xi|\eta) = 0$$
.

c.
$$I_{\mu}(\xi \vee \eta | \zeta) = I_{\mu}(\xi | \zeta) + I_{\mu}(\eta | \xi \vee \zeta)$$
 μ -a.s.

- d. $H_{\mu}(\xi \vee \eta | \zeta) = H_{\mu}(\xi | \zeta) + H_{\mu}(\eta | \xi \vee \zeta)$.
- e. $\xi \prec \eta \implies I_{\mu}(\xi|\zeta) \leq I_{\mu}(\eta|\zeta) \mu$ -a.s.
- f. $\xi \prec \eta \implies H_{\mu}(\xi|\zeta) \leq H_{\mu}(\eta|\zeta)$.
- g. $\eta \prec \zeta \implies H_{\mu}(\xi|\eta) \geq H_{\mu}(\xi|\zeta)$.
- h. $H_{\mu}(\xi \vee \eta | \zeta) \leq H_{\mu}(\xi | \zeta) + H_{\mu}(\eta | \zeta)$.

Problem 3

Let (X, \mathcal{B}, μ) be a probability space. Given $\mathcal{C}, \mathcal{D} \subseteq \mathcal{B}$ finite σ -algebras, we write $\mathcal{C} \subseteq \mathcal{D}$ if for every $C \in \mathcal{C}$ there exists $D \in \mathcal{D}$ such that $\mu(C\Delta D) = 0$.

Given finite partitions $\xi, \eta \subseteq \mathcal{B}$ of (X, \mathcal{B}) , we say that $\xi \stackrel{\circ}{=} \eta$ if $\sigma(\xi) \stackrel{\circ}{\subseteq} \sigma(\eta)$ and $\sigma(\eta) \stackrel{\circ}{\subseteq} \sigma(\xi)$.

Show that the following are true.

a. Suppose $\xi, \eta \subseteq \mathcal{B}$ are finite partitions of (X, \mathcal{B}) . Then

$$\xi \stackrel{\circ}{=} \eta \implies H_{\mu}(\xi) = H_{\mu}(\eta).$$

- b. Let $\mathscr{P}(\mathcal{B})$ denote the set of finite partitions of (X,\mathcal{B}) . Show that $\stackrel{\circ}{=}$ defines an equivalence relation $\mathscr{P}(\mathcal{B})$.
- c. Let $E = \mathscr{P}(\mathcal{B})/\mathring{=}$. Define

$$\varrho \colon E \times E \longrightarrow [0, \infty),$$
$$([\xi], [\eta]) \longmapsto \max\{H(\xi|\eta), H(\eta|\xi)\}.$$

Show that ρ is a metric on E.

Problem 4

Let (X, \mathcal{B}, μ) be a probability space and let ξ, η be finite partitions of (X, \mathcal{B}) . One defines ξ and η to be *independent* if

$$\forall A \in \xi \forall B \in \eta \quad \mu(A \cap B) = \mu(A)\mu(B).$$

Show that ξ and η are independent if and only if $H_{\mu}(\xi|\eta) = H_{\mu}(\xi)$.

Problem 5

Let $T: \mathbb{T} \to \mathbb{T}$ be the $\times 2$ -map, i.e., T(x) = 2x. Let $\xi = \{[0, 1/2), [1/2, 1)\}$.

- a. Compute ξ_0^n for $n \in \mathbb{N}$.
- b. Let μ be a Borel probability measure on \mathbb{T} . Show that $h_{\mu}(T,\xi) \leq \log 2$ with equality if and only if μ is the Lebesgue measure on \mathbb{T} .

Problem 6

Let (X, \mathcal{B}, μ, T) be a measure preserving system and ξ a partition of (X, \mathcal{B}) . Show that

$$h_{\mu}(T,\xi) = \lim_{n \to \infty} H_{\mu}(\xi|\xi_0^n).$$