D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem sheet 2

Problem 1

Let X be a compact metric space and $T: X \to X$ continuous. The system (X,T) is called *(forward) topologically mixing* if for any pair $U, V \subseteq X$ of non-empty open sets there exists $n_0 \in \mathbb{N}$ such that

$$\forall n > n_0 \quad T^n(U) \cap V \neq \emptyset.$$

Prove that the doubling map

$$\begin{array}{c} \times 2 \colon \mathbb{T} \longrightarrow \mathbb{T}, \\ x \longmapsto 2x \mod 1 \end{array}$$

is topologically mixing.

Problem 2

Let X_1 and X_2 be compact metric spaces and $T_i: X_i \to X_i$, i = 1, 2, continuous. Consider the space $X = X_1 \times X_2$ with metric

$$d_X((x_1, x_2), (y_1, y_2)) = \max\left\{d_{X_1}(x_1, y_1), d_{X_2}(x_2, y_2)\right\}$$

and the map

$$T: X \longrightarrow X,$$

$$(x_1, x_2) \longmapsto (T_1(x_1), T_2(x_2)).$$

Prove or disprove the following statements.

- a. If T_1 and T_2 are topologically transitive, then T is topologically transitive.
- b. If T_1 and T_2 are topologically mixing, then T is topologically mixing.

Problem 3

Find an example of a continuous map $T \colon \mathbb{T} \to \mathbb{T}$ such that

- a. T is minimal but not topologically mixing.
- b. T is topologically mixing but not minimal.

D-MATH	Dynamical Systems and	ETH Zürich
M. Luethi	Ergodic Theory	FS2025

Problem 4

Let $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2 - \{\mathbf{0}\}$. Show that

$$\mathcal{L}(\mathbf{v}) = \{t\mathbf{v} \mod \mathbb{Z}^2 \colon t > 0\} \subseteq \mathbb{T}^2$$

is dense if and only if $v_2 \neq 0$ and v_1/v_2 is irrational.

Problem 5

Let X_1, X_2 be compact metric spaces and let $T_i \in \text{Homeo}(X_i)$, i = 1, 2. We call (X_1, T_1) and (X_2, T_2) semi-conjugate if there exists a surjective and continuous map $h: X_1 \to X_2$ such that $T_2 \circ h = h \circ T_2$.

Suppose that (X_1, T_1) and (X_2, T_2) are semi-conjugate. Show that the following statements are true.

- a. If (X_1, T_1) is transitive, then so is (X_2, T_2) .
- b. If (X_1, T_1) is minimal, then so is (X_2, T_2) .
- c. For all $n \in \mathbb{Z}$ we have that $h(\operatorname{Fix}(T_1^n)) \subseteq \operatorname{Fix}(T_2^n)$.

Problem 6

Let X be a compact metric space and $T: X \to X$ continuous. For a subset $S \subseteq X$ we define the ω -limit of S as

$$\omega^+(S) = \left\{ y \in X \colon \exists (y_k, n_k)_{k \in \mathbb{N}} \in (S \times \mathbb{N})^{\mathbb{N}} n_k \uparrow \infty \land y = \lim_{k \to \infty} T^{n_k}(y_k) \right\}.$$

- a. Prove that $\omega^+(S)$ is *T*-invariant,
- b. Prove that $\omega^+(S)$ is closed.
- c. Find an example of a dynamical system, where

$$\overline{\bigcup_{x \in S} \omega^+(x)} \neq \omega^+(S).$$

Which inclusion does always hold?