Partial solutions to exercises for "Dynamical systems and Ergodic theory"

February 27, 2025

1 Problem Sheet 1

Problem 1

Let

$$\begin{split} T \colon [0,1] &\longrightarrow [0,1], \\ x &\longmapsto \begin{cases} 0 & \text{if } x \in \{0,1\}, \\ nx-1 & \text{if there is } n \in \mathbb{N} \text{ so that } x \in [\frac{1}{n}, \frac{1}{n-1}). \end{cases} \end{split}$$

∃ℓ

1. Let $x \in [0, 1]$. Show that

$$\in \mathbb{N} \quad T^{\ell}(x) = 0 \iff x \in [0, 1] \cap \mathbb{Q}.$$

2. Show that $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ is irrational.

Solution.

1. Suppose $x \in [0,1] - \mathbb{Q}$. Then $nx - 1 \notin \mathbb{Q}$ for every $n \in \mathbb{N}$. Hence $T(x) \notin \mathbb{Q}$. By induction, it follows that

 $\forall \ell \in \mathbb{N} \quad T^{\ell}(x) \notin \mathbb{Q}.$

In particular, if $x \notin [0,1] \cap \mathbb{Q}$, then

$$\forall \ell \in \mathbb{N} \quad T^{\ell}(x) \neq 0.$$

Now suppose $x \in \mathbb{Q} \cap [0,1]$. Let $x = \frac{p}{q}$ with $p,q \in \mathbb{N}$ coprime. We can assume without loss of generality that 0 < x < 1. Choose $n \in \mathbb{N} \setminus \{1\}$ such that $\frac{1}{n} \leq x < \frac{1}{n-1}$. Then

$$T(x) = \frac{np-q}{q}.$$

By choice of n we have that np - q < p, hence T(x) < x and $T(x) = \frac{r}{s}$ with $r, s \in \mathbb{N}$ coprime such that $0 \leq r < s$ and $s \leq q$. Since the number of rationals in [0, 1] with denominator at most q is finite, $T^{\ell}(x) = 0$ after finitely many steps.

2. It suffices to show that

$$x = e - 2 = \sum_{k=2}^{\infty} \frac{1}{k!} \in [0, 1]$$

is irrational. Note that

$$\forall n \in \mathbb{N} \quad \frac{1}{n} < \sum_{k=n}^{\infty} \frac{(n-1)!}{k!} = \frac{1}{n} + \frac{1}{n(n+1)} + \dots < \sum_{k=1}^{\infty} \frac{1}{n^k} = \frac{1}{n} \frac{1}{1 - \frac{1}{n}} = \frac{1}{n-1}.$$

One computes that

$$T(x) = 2!x - 1 = \sum_{k=3}^{\infty} \frac{2}{k!}$$

and, hence, induction shows that

$$\forall n \in \mathbb{N} \quad T^n(x) = \sum_{k=n+2}^{\infty} \frac{(n+1)!}{k!} \in \left[\frac{1}{n+2}, \frac{1}{n+1}\right).$$

Problem 2

Let $T_p: \mathbb{T} \to \mathbb{T}$ be the $\times p$ -map.

1. Show that there exists $x \in \mathbb{T}$ with $\omega^+(x)$ uncountable but not \mathbb{T} , where

$$\omega^+(x) = \big\{ y \in \mathbb{T} \colon \exists (n_k)_{k \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}} \text{ unbounded}, \ y = \lim_{k \to \infty} T_p^{n_k}(x) \big\}.$$

2. Let $x_0 = \sum_{k=1}^{\infty} \frac{1}{p^{k!}}$ show that $\omega^+(x_0)$ is countable but not finite.

Solution.

- 1. Let $\Lambda = \bigcup_{n \in \mathbb{N}} \{0, 2\}^n$ denote the set of all finite words in letters $\{0, 2\}$. As argued in class, we can enumerate these words and then the symbols to construct a word whose forward-orbit approximates every word in the middle-third Cantor set arbitrarily well. The details are left to the reader.
- 2. We will provide an outline how one can show that $\omega^+(x_0) = \{p^{-m} \mod 1: m \in \mathbb{N} \cup \{0\}\}$. Given $n \in \mathbb{N}$ let $k_n \in \mathbb{N}$ minimal such that $n \in [k_n!, (k_n + 1)!)$. Then

$$\forall n \in \mathbb{N} \quad T_p^n(x_0) = p^n \sum_{k=k_n+1}^{\infty} \frac{1}{p^{k!}} \mod 1.$$

Note that for any $\ell \in \mathbb{N}$ we have

$$\sum_{k=\ell+1}^{\infty} \frac{1}{p^{k!}} < \frac{1}{p^{(\ell+1)!}} \sum_{k=0}^{\infty} \frac{1}{p^k} \leqslant \frac{2}{p^{(\ell+1)!}}$$

In particular, it follows that for all sufficiently large $n \in \mathbb{N}$, we have that

$$T_p^n(x_0) \in \left[\frac{p^n}{p^{(k_n+1)!}} \left(1 - \frac{2}{p^{(k_n+1)!}}\right), \frac{p^n}{p^{(k_n+1)!}} \left(1 + \frac{2}{p^{(k_n+1)!}}\right)\right] \subset \mathbb{T}.$$

Now suppose that $x \in \omega^+(x_0)$ and let $(n_\ell)_{\ell \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ be a w.l.o.g. strictly increasing sequence such that $x = \lim_{\ell \to \infty} T_p^{n_\ell}(x_0)$. Suppose first that for every $m \in \mathbb{N}$ the set

$$\Omega(m) = \left\{ \ell \in \mathbb{N} \colon p^m = p^{(k_{n_\ell} + 1)! - n_\ell} \right\}$$

is finite. This implies that

$$\lim_{\ell \to \infty} \frac{p^{n_\ell}}{p^{(k_{n_\ell}+1)!}} = 0$$

It follows that for sufficiently large ℓ we have

$$0 \leqslant T_p^{n_\ell}(x_0) \leqslant < 2 \frac{p^{n_\ell}}{p^{(k_{n_\ell}+1)!}} \xrightarrow{\ell \to \infty} 0$$

Hence we can assume w.l.o.g. that there exists $m \in \mathbb{N}$ such that $\Omega(m)$ is infinite. Put differently, after passing to another subsequence, we can assume that

$$\forall \ell \in \mathbb{N} \quad T_p^{n_\ell}(x_0) \in \left[\frac{1}{p^m} \left(1 - \frac{2}{p^{(k_{n_\ell}+1)!}}\right), \frac{1}{p^m} \left(1 + \frac{2}{p^{(k_{n_\ell}+1)!}}\right)\right]$$

Since $k_{n_{\ell}} \to \infty$ as $\ell \to \infty$ this implies that $x = p^{-m}$.

Problem 3

Let A be a 2 \times 2 real matrix with eigenvalues $\lambda \in (1, \infty)$ and $\mu \in (0, 1)$. Consider the map

$$\begin{split} T \colon S^1 & \longrightarrow S^1, \\ x & \longmapsto \frac{Ax}{\|Ax\|_2}. \end{split}$$

- 1. Show that T has exactly four fixed points. 2. Show that $T^n x = \frac{A^n x}{\|A^n x\|_2}$.

3. Show that for every $x \in S^1$, the sequence $T^n x$ converges to a fixed point of T.

Solution.

- 1. Choose eigenvectors x_{λ} and x_{μ} in S^1 for eigenvalue λ and μ respectively. These exist since the eigenvalues are real and distinct. A quick computation shows that $T(x_{\lambda}) = x_{\lambda}$, i.e., x_{λ} is a fixed point and a similar argument shows the same for $-x_{\lambda}, x_{\mu}, -x_{\mu}$. So we have at least 4 fixed points. If x is a fixed point, then T(x) = x is equivalent to $||Ax||_2 x = Ax$. Thus every fixed point of T is an eigenvector and there are only four eigenvectors that lie on the unit circle.
- 2. We prove the statement by induction. The case n = 1 is just the definition of our map. Now assume that $n \in \mathbb{N} \setminus \{1\}$ and suppose that the statement is true for n 1. Then

$$T^{n}(x) = T(T^{n-1}(x)) = T(\frac{A^{n-1}x}{\|A^{n-1}x\|_{2}}) = \frac{A\frac{A^{n-1}x}{\|A^{n-1}x\|_{2}}}{\|A\frac{A^{n-1}x}{\|A^{n-1}x\|_{2}}\|_{2}} = \frac{A^{n}x}{\|A^{n}x\|_{2}}.$$

3. Because our two eigenvectors are linearly independent, we can write every vector $x \in S^1$ as $x = \frac{\alpha x_{\lambda} + \beta x_{\mu}}{\|\alpha x_{\lambda} + \beta x_{\mu}\|_2}$ for some $\alpha, \beta \in \mathbb{R}$ uniquely determined up to positive scaling and not both equal to zero. If one of the factors α, β is zero, we have a fixed point. So we just need to look at the cases where both of the factors are non-zero. Then we can use part (b) and see that

$$\lim_{n \to \infty} T^n x = \lim_{n \to \infty} \frac{A^n x}{\|A^n x\|_2} = \lim_{n \to \infty} \frac{\lambda^n \alpha x_\lambda + \mu^n \beta x_\mu}{\|\lambda^n \alpha x_\lambda + \mu^n \beta x_\mu\|_2} = \lim_{n \to \infty} \frac{\alpha x_\lambda + \left(\frac{\mu}{\lambda}\right)^n \beta x_\mu}{\|\alpha x_\lambda + \left(\frac{\mu}{\lambda}\right)^n \beta x_\mu\|_2} = \operatorname{sgn}(\alpha) x_\lambda$$

The last equality holds because $\left(\frac{\mu}{\lambda}\right) < 1$ and hence $\left(\frac{\mu}{\lambda}\right)^n$ converges to zero as $n \to \infty$.

Problem 4

- 1. Note that $d(x^{(\ell)}, x^{(1)}) \to 0$ as $\ell \to \infty$ if and only if $N(x^{(\ell)}, x^{(1)}) \to \infty$ as $\ell \to \infty$ which is the case if and only if x^{ℓ} and $x^{(1)}$ agree on a larger and larger number of initial symbols.
- 2. We apply Cantor's diagonal argument. Let (x^{ℓ}) be a sequence in $X^{\mathbb{N}}$. Given $n \in \mathbb{N}$ and $1 \leq k < p$, let

$$\Omega_n(k) = \{\ell \in \mathbb{N} \colon x_n^{(\ell)} = k\}$$

Since $\{0, \ldots, p-1\}$ is finite, there exists k_1 such that $\Omega_1(k)$ is infinite, i.e., there exists a subsequence $({}_1x^{(\ell)})_{\ell \in \mathbb{N}}$ of $(x^{(\ell)})$ such that ${}_1x_1^{(\ell)} = k_1$ for all $\ell \in \mathbb{N}$. Now we proceed by induction: Given $r \in \mathbb{N}$, $k_1, \ldots, k_r \in \{0, \ldots, p-1\}$, and a subsequence $({}_rx^{(\ell)})_{\ell \in \mathbb{N}}$ of $(x^{(\ell)})$ such that

$$\forall 1 \leqslant n \leqslant r \forall \ell \in \mathbb{N} \quad {}_{r} x_{n}^{(\ell)} = k_{n},$$

choose $0 \leq k_{r+1} < p$ and a subsequence $(r+1x^{(\ell)})$ of $(rx^{(\ell)})$ such that

$$\forall \ell \in \mathbb{N} \quad _{r+1}x_{r+1}^{(\ell)} = k_{r+1}.$$

Define the subsequence $(*x^{(\ell)})$ of $(x^{(\ell)})$ by

$$\forall \ell \in \mathbb{N} \quad *x^{(\ell)} = {}_{\ell} x^{(\ell)}.$$

Then $*x^{(\ell)} \to (k_n)_{n \in \mathbb{N}}$ as $\ell \to \infty$.

3. A point $x \in X$ is a fixed point for σ^n if and only if there exists $n \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N} \quad x_k = x_{k+n}.$$

Then x is certainly periodic with period at most n and x has period exactly n if and only if

$$x \in \operatorname{Fix}(\sigma^n) \setminus \bigcup_{1 \leqslant \ell < n} \operatorname{Fix}(\sigma^\ell).$$
(1)

We need to make this more tractable.

First, we note that for $1 \leq \ell \leq n$, if a point $x \in Fix(\sigma^n)$ is ℓ periodic (with exact period ℓ), then $\ell|n$. To this end, we will show that x is eventually (ℓ, n) -periodic.

Let $a, b \in \mathbb{Z}$ such that $an + b\ell = (n, \ell)$. For any $k > |an| + |b\ell|$ we have that $k + an \ge |bn| + 1$ and, hence,

$$x_k = x_{k+an} = x_{k+an+b\ell} = x_{k+(n,\ell)}.$$

Hence x is eventually (n, ℓ) -periodic. Since x is periodic, it is (n, ℓ) -periodic. It follows that

$$\operatorname{Per}(\sigma, n) = \operatorname{Fix}(\sigma^n) \setminus \bigcup_{\substack{\ell \mid n \\ \ell < n}} \operatorname{Per}(\sigma, \ell).$$

Hence, if we denote $g(n) = |Per(\sigma, n)|$, we get the recursive formula

$$g(n) = p^n - \sum_{\substack{\ell < n \\ \ell \mid n}} g(\ell).$$

4. Let $x \in X$ and $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that

$$\forall y \in X \quad N(x,y) > N \implies d(x,y) < \varepsilon.$$

Define x^* by

$$\forall 1 \leqslant n \leqslant N \quad x^* = x_n$$

and continue periodically by requiring $x \in Fix(\sigma^N)$.