Exercise 2.1.

(a) Let $V := M_{n \times n}(\mathbb{C})$ be the space of $n \times n$ matrices with complex entries and define the Fobenius product $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ as

$$\langle A, B \rangle \coloneqq \operatorname{Tr}(AB^{\dagger}) = \sum_{i,j=1}^{n} a_{ij} \overline{b}_{ij}$$

where Tr denotes the trace and B^{\dagger} is the Hermitian transpose of B, obtained by transposition and complex conjugation of the entries: $B^{\dagger} = \overline{B^T}$. Show that $(V, \langle \cdot, \cdot \rangle)$ is an inner-product space.

Hint: first observe that $\operatorname{Tr}(A) = \overline{\operatorname{Tr}(A^{\dagger})}$.

(b) Consider *n* inner-product spaces $(V_1, \langle \cdot, \cdot \rangle_1), \ldots, (V_n, \langle \cdot, \cdot \rangle_n)$. Show that $(V, \langle \cdot, \cdot \rangle)$, where $V = V_1 \times \cdots \times V_n$ and

$$\langle (v_1,\ldots,v_n), (w_1,\ldots,w_n) \rangle \coloneqq \sum_{i=1}^n \langle v_i, w_i \rangle_i,$$

is an inner product space.

(c) Let $W \coloneqq M_{n \times n}(L^2(\mathbb{R}, \mathbb{C}))$ be the space of $n \times n$ matrices whose entries are square integrable functions from \mathbb{R} to \mathbb{C} . Which product would make W an inner product space? **Hint:** observe that W is a "composition" of two inner product spaces.

Exercise 2.2.

An inner product space $(V, \langle \cdot, \cdot \rangle)$ is also a metric space under the norm $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$, hence it has a natural topology (induced by the metric $d(v, w) = \|v - w\|$). Prove that the vector space operations $+ : V \times V \to V$ and $\cdot : \mathbb{C} \times V \to V$ and the inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ are continuous, where $V \times V$ and $\mathbb{C} \times V$ are endowed with the natural product topologies. Recall that the topology in $V \times V$ is the one induced by the norm

$$||(v_1, v_2)||_{V \times V} := ||v_1|| + ||v_2||.$$

Similarly, the norm (thus the metric and the topology) on $\mathbb{C} \times V$ is given by

$$\|(\alpha, v)\|_{\mathbb{C}\times V} := |\alpha| + \|v\|.$$

Exercise 2.3.

Show that $\ell^p(\mathbb{N})$ for $0 is a vector space but not a normed space, that is <math>\left(\sum_{n \in \mathbb{N}} |x_n|^p\right)^{\frac{1}{p}}$ does not define a norm on $\ell^p(\mathbb{N})$.

Exercise 2.4.

In the normed space $(L^2((0,1)), \|\cdot\|_{L^2})$, consider the subset

$$X = \left\{ f \in L^2((0,1)) : \int_0^1 f \, dx = 1 \right\}.$$

Which of the following statements are true?

- $\Box X$ is not well-defined.
- $\Box X$ is well-defined, open and convex.
- \Box X is well-defined, closed, convex but not a linear subspace.
- \Box X is well-defined, closed and a linear subspace.

Exercise 2.5.

In the following normed spaces, determine whether the given subsets X are well-defined, open, closed, linear subspaces and/or convex.

- (a) In the normed space $(C([0,1]), \|\cdot\|_{L^{\infty}})$, the subset X of nowhere vanishing functions.
- (b) In the normed space $(C([0,1]), \|\cdot\|_{L^2})$, the subset X of nowhere vanishing functions.
- (c) In the normed space $(L^2(\mathbb{R}), \|\cdot\|_{L^2})$, the subset

$$X = \left\{ f \in L^2(\mathbb{R}) : f(x) = f(-x) \text{ for a.e. } x \in \mathbb{R} \right\}.$$

Hint: It's useful to recall that if $u_k \to u$ in L^2 then, up to picking a subsequence, there is a null measure set N such that $u_k(x) \to u(x)$ for all $x \notin N$.

(d) (\bigstar) In the normed space $(L^2((0,1)), \|\cdot\|_{L^2})$, the subset

$$X = \left\{ f \in L^2((0,1)) : f \ge 0 \text{ a.e. and } \int_0^1 \frac{2f}{1+f} \, dx \ge 1 \right\}.$$

Hint: observe that the map $s \mapsto 2s/(1+s)$ is concave for $s \ge 0$.