Exercise 3.1.

Which of the following pairs (vector space, bilinear form) are Hilbert spaces? (a) $V := L^2(\mathbb{R}; \mathbb{C})$ and $\langle u, v \rangle := \int_{\mathbb{R}} u(t) \bar{v}(t) \frac{dt}{1+t^2}$

(b) $V := \{ \text{real polynomials of degree at most } N \} \text{ and } \langle p, q \rangle := p(\frac{d}{dx})|_{x=0} q.$

Hint: If p(X) is a polynomial, then $p(\frac{d}{dx})|_{x=0}$ is the differential operator obtained by replacing X with $\frac{d}{dx}$ and then evaluating at x = 0. Example: if $p(X) = X^2 + 3$ then $p(\frac{d}{dx})|_{x=0}q = q''(0) + 3q(0)$. Observe that $(\frac{d}{dx})_{x=0}^j x^k = \delta^{kj} k!$.

(c)
$$V := L^1((0,1); \mathbb{R})$$
 and $\langle u, v \rangle := \int_0^1 u(x)v(x) dx$.
(d) $V := \mathbb{Q}^d$ and $\langle x, y \rangle := \sum_{k=1}^d x_k y_k$.

Exercise 3.2.

Let

$$V \coloneqq \left\{ u \in C^2((0,1)) \cap C([0,1]) : u', u'' \text{ bounded on } (0,1), \, u(0) = 0 \right\}$$

Prove or disprove that the following maps $\|\cdot\|: V \to \mathbb{R}$ are norms (no need to check completeness) and determine whether they arise from an inner product.

(a)
$$||u|| = \left(\int_0^1 |u''(x)|^2 dx\right)^{1/2}$$

(b) $||u|| = \left(\int_0^1 |u'(x)|^2 dx\right)^{1/2}$
(c) $||u|| = \left(\int_0^1 |u'(x)|^3 dx\right)^{1/3}$

(d)
$$||u|| = \left(\int_0^1 \int_0^1 \frac{|u(x) - u(y)|^2}{|x - y|^2} dx dy\right)^{1/2}$$

Hint: Recall the Minkowski inequality: for $p \in (1, +\infty)$ and $f, g \in L^p(X, \mu)$, we have $(\int_X |f + g|^p d\mu)^{1/p} \leq (\int_X |f|^p d\mu)^{1/p} + (\int_X |g|^p d\mu)^{1/p}$.

Exercise 3.3.

Consider the Hilbert space $H := L^2((-1,1))$. Apply the Gram-Schmidt algorithm to the ordered set $\{1, x, x^2\} \subset H$, and find three orthonormal polynomials $e_0(x), e_1(x), e_2(x)$.

Exercise 3.4.

Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space. Show that a linear subspace of H is itself a Hilbert space with respect to $\langle \cdot, \cdot \rangle$ if and only if it is closed.

Exercise 3.5. **★**

This exercise is concerned with a quantitative study of the Cauchy-Schwarz inequality. (a) Let H be a real inner product space. We write $x \cdot y$ for the inner product of $x, y \in H$ and |x| for the induced norm. Prove the following identity:

$$|x||y| - x \cdot y = \frac{|x||y|}{2} \Big| \frac{x}{|x|} - \frac{y}{|y|} \Big|^2 \ge 0, \quad \forall x, y, \in H.$$

(b) Characterize the set $C \subset H \times H$ of pairs of vectors that saturate the Cauchy-Schwarz inequality, i.e. $x \cdot y = |x||y|$. Plot C in the case $H = \mathbb{R}$.

(c) If x, y are ϵ -close to saturating the Cauchy-Schwarz inequality, that is

$$x \cdot y \ge (1 - \epsilon)|x||y|,$$

then how close are x, y to the set C? Find an upper bound for the quantity

dist
$$((x, y), C)^2 := \inf_{(x', y') \in C} |x - x'|^2 + |y - y'|^2.$$