Exercise 4.1.

Which of the following statements are true?

(a) $\ell^2(\mathbb{N})$ and $\ell^2(\mathbb{Z})$ are isometrically isomorphic as Hilbert spaces.

(b) The projection of the element $x = \left(\frac{n}{(n+1)^2}\right)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$ onto the subspace generated by $y = \left(\frac{1}{n}\right)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$ is given by $\left(\frac{\pi^2}{6} - 1\right)y$ **Hint:** You can use $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

(c) The projection of the element $x = \left(\frac{n}{(n+1)^2}\right)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$ onto the subspace generated by $y = \left(\frac{1}{n}\right)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$ is given by $(1 - \frac{6}{\pi^2})y$ **Hint:** You can use $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

(d) Given any $u \in L^2((0, 1))$ there exists a unique polynomial \tilde{p} that minimizes the following function on the set of polynomials: $p \mapsto ||u - p||_{L^2((0,1))}$. **Hint**: Recall that the set of polynomials is dense in $L^2((0, 1))$.

(e) Let H be a Hilbert space. If $K \subset H$ is not convex, then there might not be a unique projection $\pi_K(x)$ onto K.

Exercise 4.2.

Consider the Hilbert space $H = L^2((-1, 1))$. For each of the following subspaces $Y \subset H$ show that Y is closed, find its orthogonal complement Y^{\perp} and find a formula for the projection $\pi_Y \colon H \to Y$.

(a) $Y = \{ u \in H : u = \text{constant a.e.} \}.$

(b)
$$Y = \{ u \in H : \int_{-1}^{1} u(x) \, dx = 0 \}.$$

(c) $Y = \{ u \in H : u(x) = u(-x) \text{ a.e.} \}.$

Exercise 4.3. Calculuate the minimum

$$\min_{a,b,c\in\mathbb{C}} \int_{-1}^{1} |x^3 - ax^2 - bx - c|^2 \, dx.$$

Hint: Recall Exercise 3.3 on Problem Sheet 3.

Exercise 4.4.

(a) Let H be a Hilbert space and $K \subset H$ a closed convex subset. Show that the projection onto K satisfies

$$\|\pi_K(x) - \pi_K(y)\| \le \|x - y\|, \quad \forall x, y \in H.$$

Hint: Consider the degree 2 polynomial $p(t) = ||(1-t)\pi_K(x) + tx - (1-t)\pi_K(y) - ty||^2$ and its derivative at t = 0.

(b) Let now $(V, \|\cdot\|)$ be a normed vector space and define the map

$$F: V \to V, \quad F(x) = \begin{cases} x & \text{if } \|x\| \le 1\\ \frac{x}{\|x\|} & \text{if } \|x\| > 1 \end{cases}$$

Show that

$$||F(x) - F(y)|| \le 2||x - y||, \quad \forall x, y \in V.$$

(c) Show that, in general, the constant 2 in the bound above cannot be improved. **Hint:** Take $V = \mathbb{R}^2$ with the norm $||(x_1, x_2)|| = |x_1| + |x_2|$.

(d) What happens if V is a Hilbert space and $\|\cdot\|$ its Hilbert norm? Can the bound be improved?

Exercise 4.5.

(a) Show that for $1 \le p < \infty$ the space $\ell^p_{\mathbb{R}}(\mathbb{N})$ is separable. **Hint:** Consider the set

$$S = \{ x = (x_n)_{n \in \mathbb{N}} \in \ell^p(\mathbb{N}) : x_n \in \mathbb{Q} \ \forall n \in \mathbb{N}, \ x_n = 0 \text{ except for finitely many } n \}.$$

(b) The space $\ell^{\infty}_{\mathbb{R}}(\mathbb{N})$ is not separable. **Hint:** Consider the set

$$S = \{x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N}) : x_n \in \{0, 1\} \ \forall n \in \mathbb{N}\}$$