Exercise 5.1.

Which of the following statements are true?

(a) If a linear map $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ satisfies $||Tu||_{L^2(\mathbb{R})} \leq 100$ for all $u \in L^2(\mathbb{R})$ with $||u||_{L^2(\mathbb{R})} \leq \frac{1}{10}$, then T is continuous.

(b) Assume that two bounded linear functionals $\phi, \psi \in L^2([0,1])^*$ agree on C([0,1]), i.e. $\phi(u) = \psi(u)$ for all $u \in C([0,1]) \subset L^2([0,1])$. Then $\phi = \psi$.

(c) If ϕ is a continuous linear functional on a Hilbert space H, then ker ϕ is a closed linear subspace of H.

(d) For $x = (x_k)_{k \in \mathbb{N}} \in \ell^2(\mathbb{N})$ define $(Tx)_k = \log(1/k)x_k$ for all $k \in \mathbb{N}$. Then T defines a bounded linear operator $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$.

(e) For $u \in L^2((0,1))$ define $F(u)(x) = u(x)^2$. Then $F : L^2((0,1)) \to L^2((0,1))$ defines a bounded (non-linear) operator.

Exercise 5.2.

For a fixed measurable function $a: (0,1) \to \mathbb{C}$, consider the multiplication operator

$$M_a: L^2((0,1)) \to L^2((0,1)), \quad M_a u(x) = a(x)u(x).$$

We want to prove that M_a is continuous on $L^2((0,1))$ if and only if $a \in L^{\infty}(0,1)$, in which case the operator norm satisfies $||M_a||_{\text{op}} = ||a||_{L^{\infty}(0,1)}$. (a) Prove the inequality

$$\int_0^1 |a(x)u(x)|^2 \, dx \le \text{esssup}_{x \in (0,1)} |a(x)|^2 \int_0^1 |u(x)|^2 \, dx,$$

and deduce that $||M_a||_{\text{op}} \le ||a||_{L^{\infty}(0,1)}$.

(b) Show that if $E \subset (0, 1)$ is measurable with |E| > 0, then

$$\frac{\|M_a \mathbf{1}_E\|_{L^2(0,1)}^2}{\|\mathbf{1}_E\|_{L^2(0,1)}^2} = \frac{1}{|E|} \int_E |a(x)|^2 \, dx.$$

(c) By an appropriate choice of the measurable set E in the previous point, prove that $\|M_a\|_{\text{op}} \ge \|a\|_{L^{\infty}}$.

Hint: Take E = "the set where |a| is large" and recall the definition of essential supremum.

Exercise 5.3.

Prove that each of the following linear operators is bounded on $\ell^2(\mathbb{N})$ (i.e. as an operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$). Illustrate each operator as an infinite matrix with respect to the standard basis vectors $e_n = (\delta_{n,k})_{k \in \mathbb{N}}$.

(a) (Shift operator) $S: (x_1, x_2, x_3, \ldots) \mapsto (0, x_1, x_2, \ldots).$

(b) (Diagonal matrix) M_{λ} : $(x_1, x_2, x_3, \ldots) \mapsto (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \ldots)$, where $\{\lambda_k\}_{k \ge 1}$ is some given sequence such that $\sup_{k \ge 1} |\lambda_k| < \infty$.

(c) $T: (x_1, x_2, x_3, \ldots) \mapsto (x_1 - x_2, x_2 - x_3, x_3 - x_4, \ldots).$

(d) (Hilbert-Schmidt matrix) For each $k \ge 0$ set $(Ax)_k := \sum_{j\ge 1} A_{k,j} x_j$, where the infinite matrix $\{A_{i,j}\}_{i\ge 1,j\ge 1}$ satisfies

$$\sum_{i,j\geq 1} |A_{i,j}|^2 < \infty.$$

Hint: Apply the Cauchy-Schwarz inequality to the sum $\left|\sum_{j>1} A_{k,j} x_j\right|^2$ for fixed k.

Exercise 5.4.

Prove the following inequalities and interpret them as the continuity of a suitable linear map between suitable normed vector spaces:

(a) For all $u \in L^2(\mathbb{R})$, we have

$$\int_0^1 |u(t)|^2 \, dt \le \int_{\mathbb{R}} |u(t)|^2 \, dt.$$

(b) For each polynomial $p(X) = p_0 + p_1 X + \ldots + P_k X^N$, we have

$$\max_{x \in [-1,1]} |p(x)| \le \sum_{j=0}^{N} |p_j|.$$

(c) For all $u \in C^1([0,1])$ with u(0) = 0, we have

$$\max_{x \in [0,1]} |u(x)| \le \int_0^1 |u'(t)| \, dt.$$

Exercise 5.5.

This exercise concerns compactness in infinite dimensional Hilbert spaces.

(a) Show that the closed unit ball $\overline{B_1^{\ell^2(\mathbb{N})}} = \{x \in \ell^2(\mathbb{N}) : ||x||_{\ell^2} \leq 1\}$ is not a compact subset of $\ell^2(\mathbb{N})$.

Hint: Find a sequence contained in the closed unit ball with no converging subsequences.

(b) Show that $C = \{x = (x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) : |x_n| \leq \frac{1}{n} \forall n \in \mathbb{N}\}\$ is a compact subset of $\ell^2(\mathbb{N})$. C is known as the Hilbert cube.

Hint: Show that C is totally bounded, i.e. C can be covered by finitely many balls of any fixed radius.