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Exercise 10.1. ♣
Which of the following statements are true?
(a) If f ∈ Cm(R) and for all derivatives up to order m, we have f, f ′, . . . , f (m) ∈ L1(R), then

lim
|ξ|→∞

|ξ|mf̂(ξ) = 0.

(b) Let f ∈ L1(Rd) and let A be an invertible d× d matrix. Then we have

f̂ ◦ A(ξ) = f̂(A−1ξ).

(c) For f, g ∈ S(R), the Fourier transform of h(x, y) = f(2x)g(y/2) is ĥ(ξ, η) = f̂(ξ/2)ĝ(2η).

(d) Let ψ ∈ C1
c (Rd) with ψ(x) ≡ 1 in a neighbourhood of x = 0. Then for each f ∈ L1(Rd):

lim
ϵ→0

∫
Rd

f(x)ψ(ϵx) dx =

∫
Rd

f(x) dx and lim
ϵ→0

∫
Rd

f(x)∂xj
ψ(ϵx) dx = 0.

Exercise 10.2.
Let f ∈ L1(R) be a continuous function with Fourier transform

f̂(ξ) =
log(1 + ξ2)

ξ2
.

Compute the following:
(a)

∫
R f(x) dx,

(b) f(0).

Exercise 10.3.
(a) Compute the Fourier transform of f(x) = e−ax2

for a > 0.

(b) Compute the convolution e−ax2 ∗ e−bx2
for a, b > 0 by using the Fourier transform.

Exercise 10.4.
Let f ∈ S(R) be a Schwartz function. Show that the sum

∑
n∈Z f(

√
2πn) is convergent and

prove the Poisson summation formula:∑
n∈Z

f
(√

2πn
)
=

∑
n∈Z

f̂
(√

2πn
)
.

Hint: Consider the
√
2π-periodic function defined by F (x) =

∑
n∈Z f(x+

√
2πn).
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ETH Zürich
HS 2024

Exercise 10.5.
The goal of this problem is to show the existence of the harmonic extension to the interior
of the unit disk of a sufficiently regular function f defined on the disk’s boundary.
Consider the following second order differential operators in two variables (x1, x2):

∆ := ∂11 + ∂22 and L := ∂11 +
1

x1
∂1 +

1

x21
∂22.

We say that a twice differentiable function w(x1, x2) is harmonic if ∆w = 0 in its domain.
(a) Let D := {(x, y) : x2+y2 < 1} be the unit disk. Given u : D → R, consider the functiona

v(r, θ) := u(r cos θ, r sin θ), r ∈ [0, 1], θ ∈ R. (1)

Using the chain rule, check that

(∆u)(r cos θ, r sin θ) = Lv(r, θ), ∀ r ∈ (0, 1), θ ∈ R.

(b) Given any sufficiently regular function F : ∂D → R consider its 2π-periodic version
f : R → R defined by

f(θ) := F (cos θ, sin θ), θ ∈ R.

Show that we can find a solution u : D \ {0} → R of{
∆u = 0 in D \ {0},
u = F on ∂D,

by instead solving 
∂θθv + r∂rv + r2∂rrv = 0 in (0, 1)× R,
v(r, θ + 2π) = v(r, θ) in (0, 1]× R,
v(1, θ) = f(θ) for all θ ∈ R,

(2)

and then defining u using (1).

(c) Formally solve the system (2) by using the ansatz v(r, θ) :=
∑

k∈Z uk(r)e
ikθ. Explain why

the {uk(r)} are not uniquely determined by the Fourier coefficients {ck(f)}. Explain why
they are unique if we further require that

lim sup
r↓0

|uk(r)| <∞ ∀k ∈ Z. (3)

(d) Let v(r, θ) be the ansatz constructed in the previous subquestion by requiring the extra
condition (3). Show that v is of class C∞ for (r, θ) ∈ (0, 1)×R, as soon as f ∈ L2((−π, π)).

(e) ⋆ Show that, when f ∈ L2((−π, π)), the v you constructed with the extra condition (3)
in fact corresponds to a u that is of class C∞ in the whole open disk (including the origin!).
Furthermore, this u satisfies ∆u = 0 in D and meets the boundary condition in the sense
that

lim
r↑1

∥∥u(r cos(·), r sin(·))− F (cos(·), sin(·))
∥∥
L2((−π,π))

= 0.

aThis is u in polar coordinates.
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