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Exercise 1.1. ♣
Which of the following statements are true? There may be more than one true statement.

(a) If f ∈ L1(Rn) then necessarily f ∈ L2(Rn)? %

(b) If f ∈ ℓ1(N) then necessarily f ∈ ℓ2(N)? !
(c) Let (fn)n∈N be a collection of non-negative measurable functions. Is it true that

∞∑
n=1

∫
R
fn(x) dx =

∫
R

∞∑
n=1

fn(x) dx ?

!

(d) Is it possible to find a sequence of functions {fk} ⊂ L2(R) such that∫
R
|fk(x)− 1|2 dx → 0 as k → ∞ ?

%

(e) A Cauchy sequence (say, in a metric space) can have at most one limit point? !

(f) The interval (0, 1) ⊂ R is complete? %

Solution:

(a) No, there is no inclusion between these spaces. For example, in Rn take f(x) = 1/(1 + |x|n)
and g(x) = |x|−n/2e−|x|. Then f ∈ L2(Rn) \ L1(Rn) and g ∈ L1(Rn) \ L2(Rn).

(b) Yes. Since f ∈ ℓ1(N) is summable it is necessarily bounded, i.e. |f(j)| ≤ C for all j ∈ N and
some C > 0. Hence

∑
j∈N f(j)2 ≤ C

∑
j∈N f(j) < ∞.

(c) Yes, as a direct consequence of the Monotone Convergence Theorem applied to the partial sums
gN (x) =

∑N
n=1 fn(x).

(d) Suppose one could construct such a sequence. Then, by the triangle inequality

∥f∥L2 ≤ ∥fk − f∥L2 + ∥fk∥L2 ≤ 1 + ∥fk∥L2

for k sufficiently large. Since fk ∈ L2, this would imply that f(x) = 1 ∈ L2, but 1 /∈ L2(R) and we
get a contradiction.

(e) Yes. Assume that a, b are both limit points of a Cauchy sequence {xn}. Take converging
subsequences xkn → a and xjn → b. The triangle inequality gives

d(a, b) ≤ d(a, xkn) + d(xkn , xjn) + d(xjn , b).

Now for any ε > 0, we can choose n large enough, so that the first and second terms are smaller
than ε by the convergence of the respective subsequence, and the middle term is smaller than ε by
the Cauchy property of the sequence. Thus, d(a, b) = 0, i.e. a = b.

(f) No, the sequence xn := 2−n is Cauchy, but its limit point in R (i.e., zero) does not lie in (0, 1).
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Exercise 1.2.
Consider the sequence of functions fn : (0,∞) → R defined by

fn(x) =
arctan(x)

x
χ(0,n)(x).

Determine the pointwise limit f and discuss the convergence fn → f in L2
(
(0,∞)

)
. Is the

limit also in L1
(
(0,∞)

)
? What can we deduce about the completeness of the space L1 with

respect to the norm ∥ · ∥L2?

Solution: The pointwise limit is clearly

f(x) =
arctan(x)

x
.

We note that fn ∈ L2
(
(0,∞)

)
for every n, since the fn are compactly supported bounded functions

(notice that limx→0 arctan(x)/x = 1). Moreover, the sequence fn converges to f in L2
(
(0,∞)

)
.

Indeed

∥f − fn∥2L2 =

∫ ∞

0
|f(x)− fn(x)|2 dx =

∫ ∞

n

∣∣∣∣arctan(x)x

∣∣∣∣2 dx ≤
(π
2

)2
∫ ∞

n

1

x2
dx =

(π
2

)2 1

n
.

Thus, ∥f − fn∥L2 → 0 as n → ∞.

Now, observe that fn ∈ L1
(
(0,∞)

)
for every n, but the limit f is not in L1. Indeed, for x ≥ 1

we have arctan(x)
x ≥ π

4
1
x , which is not integrable on (1,∞). Since the sequence fn is Cauchy with

respect to the L2 norm, this shows that L1 is not complete with respect to the L2 norm.

Exercise 1.3.
Recall that the Dominated Convergence Theorem implies that a collection of measurable
functions fn : R → C, satisfying |fn| ≤ g for some g ∈ L1(R), also satisfies

lim
n→∞

∫
R
fn(x)dx =

∫
R

(
lim
n→∞

fn(x)
)
dx

whenever the pointwise limit limn→∞ fn(x) exists a.e. Show, via a counterexample, that the
hypothesis |fn| ≤ g ∈ L1(R) is necessary.

Hint: Can you think of an example in which the statement fails? For instance, a sequence
of functions fn with constant integral (> 0) but with poitwise limit 0?

Solution: For instance the functions fn(x) := n · χ(0,1/n)(x) provide a counterexample. Indeed,
for any x ∈ R the value fn(x) is eventually 0, i.e. the fn converge pointwise to 0. However, for any
n ∈ N ∫

R
fn(x) dx =

∫ 1
n

0
ndx = 1.
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Thus,

lim
n→∞

∫
R
fn(x) dx = 1 ̸= 0 =

∫
R

lim
n→∞

fn(x) dx.

Note as an aside that this implies any function g dominating the sequence cannot be integrable.
Indeed, the lowest dominant is

h(x) := sup
n∈N

fn(x),

which is bounded by any dominant g, and satisfies∫
R
g dx ≥

∫
R
h dx =

∞∑
n=1

∫ 1
n

1
n+1

ndx =

∞∑
n=1

1

n+ 1
= ∞.

Exercise 1.4.
Consider the space C

(
[0, 1]

)
of continuous functions on [0, 1] equipped with the norm

∥f∥∞ = max
x∈[0,1]

|f(x)|.

Show that this is not an inner product space, i.e. there is no inner product on C
(
[0, 1]

)
which induces this norm.

Hint: Recall the parallelogram law.

Solution: For any norm induced by an inner product the parallelogram law must hold, that is

∥f + g∥2 + ∥f − g∥2 = 2∥f∥2 + 2∥g∥2, ∀f, g.

We show that the parallelogram law with respect to the given norm does not hold for two elements
in C

(
[0, 1]

)
. Define

f, g : [0, 1] → R, f(x) = x, g(x) = 1− x.

Then f, g ∈ C
(
[0, 1]

)
and we calculate

∥f∥∞ = max
x∈[0,1]

|x| = 1, ∥g∥∞ = max
x∈[0,1]

|1− x| = 1.

∥f + g∥∞ = max
x∈[0,1]

1 = 1, ∥f − g∥∞ = max
x∈[0,1]

|2x− 1| = 1.

Thus,
∥f + g∥2∞ + ∥f − g∥2∞ = 2 ̸= 4 = 2

(
∥f∥2∞ + ∥g∥2∞

)
.
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Exercise 1.5.
Consider the space ℓp(N) of p-summable sequences (for p ≥ 1) with the norm

∥x∥p =
(∑
n∈N

|xn|p
) 1

p
.

Show that ℓp(N) with p ̸= 2 is not an inner product space.

Solution: Once again, we exhibit two elements x, y ∈ ℓp(N) for which the parallelogram law does
not hold. Define

x = (1, 1, 0, 0, · · · ), y = (1,−1, 0, 0, · · · ).

Then
∥x∥p = ∥y∥p = 2

1
p , ∥x+ y∥p = ∥x− y∥p = 2.

Thus,

∥x+ y∥2p + ∥x− y∥2p = 8 ̸= 4 · 2
2
p = 2

(
∥x∥2p + ∥y∥2p

)
,

since p ̸= 2.
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