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Exercise 2.1.

(a) Let V := Mn×n(C) be the space of n × n matrices with complex entries and define the
Fobenius product ⟨·, ·⟩ : V × V → C as

⟨A,B⟩ := Tr(AB†) =
n∑

i,j=1

aijbij

where Tr denotes the trace and B† is the Hermitian transpose of B, obtained by transposition
and complex conjugation of the entries: B† = BT . Show that (V, ⟨·, ·⟩) is an inner-product
space.
Hint: first observe that Tr(A) = Tr(A†).

(b) Consider n inner-product spaces (V1, ⟨·, ·⟩1), . . . , (Vn, ⟨·, ·⟩n). Show that (V, ⟨·, ·⟩), where
V = V1 × · · · × Vn and

⟨(v1, . . . , vn), (w1, . . . , wn)⟩ :=
n∑

i=1

⟨vi, wi⟩i,

is an inner product space.

(c) Let W := Mn×n(L
2(R,C)) be the space of n × n matrices whose entries are square

integrable functions from R to C. Which product would make W an inner product space?
Hint: observe that W is a “composition” of two inner product spaces.

Solution:

(a) Note that Mn×n(C) is a vector space. We need to check that ⟨·, ·⟩ satisfies the three axioms of
inner product space: conjugate symmetry, linearity in the first argument and positive definiteness.
First observe that the property Tr(A) = Tr(A†) follows directly from the fact that the trace is
invariant by transposition. Notice also that Hermitian transposition is an involution, i.e. (B†)† = B.
Then

⟨A,B⟩ = Tr(AB†) = Tr((AB†)†) = Tr((B†)†A†) = Tr(BA†) = ⟨B,A⟩
and hence conjugate symmetry holds. Linearity in the first argument follows trivially by linearity
of the trace. Finally, if A ̸= 0,

Tr(AA†) =

n∑
i,j=1

aijaij =

n∑
i,j=1

|aij |2 > 0.

which proves positive definiteness.

(b) Note that the Cartesian product of vector spaces is a vector space. Once again, we check
the three axioms for an inner product. These follow from the corresponding axioms for the inner
product spaces (Vi, ⟨·, ·⟩i). Denote v = (v1, . . . , vn) and w = (w1, . . . , wn). We readily check that

⟨v, w⟩ =
∑
i

⟨vi, wi⟩i =
∑
i

⟨wi, vi⟩i = ⟨w, v⟩

and

⟨αv + βu,w⟩ =
∑
i

⟨αvi + βui, wi⟩i =
∑
i

α⟨vi, wi⟩i + β⟨ui, wi⟩i = α⟨v, w⟩+ β⟨u,w⟩
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which prove the first two axioms. For positive definiteness, note that if v ̸= 0 then vk ̸= 0 for some
k ∈ {1, . . . , n}. Thus

⟨v, v⟩ =
n∑

i=1

⟨vi, vi⟩i ≥ ⟨vk, vk⟩k > 0.

(c) Note that Mn×n(L
2(R,C)) is a vector space under component-wise addition and scalar multi-

plication. Let F = (fij)1≤i,j≤n and G = (gij)1≤i,j≤n be two matrices of square integrable functions.
Define

⟨F,G⟩ =
n∑

i,j=1

∫
R
fij(x)gij(x)dx.

This product is a natural choice since it’s the “composition” of the Frobenius product (defined
above) and the L2 inner product. It’s straightforward to check that all the axioms of an inner
product space hold.

Remark: this “composition trick” was implicitly used also in part 2. Indeed the inner product there
is a composition of the ones of the respective Vi and the one in Rn, given by a · b =

∑
i aibi.

Exercise 2.2.
An inner product space (V, ⟨·, ·⟩) is also a metric space under the norm ∥ · ∥ :=

√
⟨·, ·⟩, hence

it has a natural topology (induced by the metric d(v, w) = ∥v − w∥). Prove that the vector
space operations + : V ×V → V and · : C×V → V and the inner product ⟨·, ·⟩ : V ×V → C
are continuous, where V × V and C × V are endowed with the natural product topologies.
Recall that the topology in V × V is the one induced by the norm

∥(v1, v2)∥V×V := ∥v1∥+ ∥v2∥.

Similarly, the norm (thus the metric and the topology) on C× V is given by

∥(α, v)∥C×V := |α|+ ∥v∥.

Solution: Recall that a map f : X → Y between metric spaces (X, dX) and (Y, dY ) is continuous iff
for each x1 ∈ X and each ϵ > 0 there is δ > 0 such that dX(x1, x2) < δ implies dY (f(x1), f(x2)) < ϵ.

The continuity of the sum is follows from the triangle inequality. For (v1, v2), (w1, w2) ∈ V ×V , we
have

∥(v1 + v2)− (w1 + w2)∥ ≤ ∥v1 − w1∥+ ∥v2 − w2∥ = ∥(v1, v2)− (w1, w2)∥V×V .

So if (v1, v2) and (w1, w2) are ϵ-close in V × V (i.e., the right hand side is smaller than ϵ) then
v1 + v2 is ϵ-close to w1 + w2 in V .

The continuity of scalar multiplication follows from homogeneity and the triangle inequality. Indeed,
for (α, v), (β,w) ∈ C× V , we have

∥αv − βw∥ = ∥αv − βv + βv − βw∥ ≤ ∥(α− β)v∥+ ∥β(v − w)∥ ≤ |α− β|∥v∥+ |β|∥v − w∥
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Now |β| ≤ |α|+ |β − α|, so

∥αv − βw∥ ≤ ∥v∥|α− β|+ |α|∥v − w∥+ |α− β|∥v − w∥
≤ max{|α|, ∥v∥}∥(α, v)− (β,w)∥C×V + ∥(α, v)− (β,w)∥2C×V

Thus, given (α, v) ∈ C × V and ϵ > 0, we can choose ∥(α, v) − (β,w)∥ small enough so that
∥αv − βw∥ < ϵ

The continuity of the inner product follows by applying the Cauchy and triangle inequalities. For
(v1, v2), (w1, w2) ∈ V × V , we find

|⟨v1, v2⟩ − ⟨w1, w2⟩| = |⟨v1, v2⟩ − ⟨w1, v2⟩+ ⟨w1, v2⟩ − ⟨w1, w2⟩| ≤ |⟨v1 − w1, v2⟩|+ |⟨w1, v2 − w2⟩|
≤ ∥v1 − w1∥∥v2∥+ ∥w1∥∥v2 − w2∥
≤ ∥v1 − w1∥∥v2∥+ ∥v1∥∥v2 − w2∥+ ∥v1 − w1∥∥v2 − w2∥
≤ max{|v1|, ∥v2∥}∥(v1, v2)− (w1, w2)∥V×V + ∥(v1, v2)− (w1, w2)∥2V×V ,

Thus, given (v1, v2) ∈ V × V and ϵ > 0, we can choose ∥(v1, v2) − (w1, w2)∥ small enough so that
|⟨v1, v2⟩ − ⟨w1, w2⟩| < ϵ.

Exercise 2.3.
Show that ℓp(N) for 0 < p < 1 is a vector space but not a normed space, that is

(∑
n∈N |xn|p

) 1
p

does not define a norm on ℓp(N).

Solution: We first remark that

ℓp(N) =
{
(xn)n∈N :

∑
n∈N

|xn|p <∞
}

is a vector space. It is immediate that x ∈ ℓp(N) =⇒ αx ∈ ℓp(N) for α ∈ C. To see that ℓp(N) is
closed under taking sums, note that

(1 + t)p ≤ 1 + tp, ∀t ≥ 0.

Indeed, the two sides agree at t = 0, and the derivatives satisfy

∂t(1 + t)p = p(1 + t)p−1 ≤ ptp−1 = ∂t(1 + tp), ∀t ≥ 0,

since p− 1 < 0. It now follows that

(a+ b)p ≤ ap + bp, ∀a, b ≥ 0, 0 < p < 1.

Thus, for x, y ∈ ℓp(N), we have

|xn + yn|p ≤ (|xn|+ |yn|)p ≤ |xn|p + |yn|p, ∀n ∈ N,

and finally ∑
n∈N

|xn + yn|p ≤
∑
n∈N

|xn|p +
∑
n∈N

|yn|p,
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i.e. x, y ∈ ℓp(N) =⇒ x+ y ∈ ℓp(N).

The function x ∈ ℓp(N) → h(x) =
(∑

n∈N |xn|p
) 1

p is not a norm, because the triangle inequality is
not satisfied. Indeed, for

x = (1, 0, 0, · · · ), y = (0, 1, 0, · · · )

we find h(x) = h(y) = 1 and h(x+ y) = 2
1
p . Since 0 < p < 1, we thus have

h(x+ y) > h(x) + h(y).

Exercise 2.4. ♣
In the normed space (L2((0, 1)), ∥ · ∥L2), consider the subset

X =
{
f ∈ L2((0, 1)) :

∫ 1

0

f dx = 1
}
.

Which of the following statements are true?

□ X is not well-defined.

□ X is well-defined, open and convex.

□ X is well-defined, closed, convex but not a linear subspace.

□ X is well-defined, closed and a linear subspace.

Solution: X is well-defined, closed and convex, but not a linear subspace. It’s is well-defined since
L2((0, 1)) ⊂ L1((0, 1)). It can’t be a subspace since 0 /∈ X. It’s closed because if uk ∈ X and
uk → u in L2 then∣∣∣∫ 1

0
uk dx−

∫ 1

0
u dx

∣∣∣ ≤ ∫ 1

0
|uk − u| = ∥u− uk∥L1 ≤ ∥uk − u∥L2 → 0.

Thus,
∫ 1
0 uk dx →

∫ 1
0 u dx and since

∫ 1
0 uk dx = 1 for all k, we find

∫ 1
0 u dx = 1. This proves that

u ∈ X, hence X contains its accumulation points, i.e. is closed. Since X ̸= L2((0, 1)), X is closed
and L2((0, 1)) is connected, X cannot be open; alternatively you can show that the complement of
X is not closed by taking e.g. fk(x) = 1 + 2−k.

Convexity is immediately checked by linearity of the integral:

u, v ∈ X, t ∈ [0, 1] =⇒
∫ 1

0
(tu+ (1− t)v) dx = t

∫ 1

0
u dx+ (1− t)

∫ 1

0
v dx = t+ 1− t = 1

=⇒ tu+ (1− t)v ∈ X.
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Exercise 2.5.
In the following normed spaces, determine whether the given subsets X are well-defined,
open, closed, linear subspaces and/or convex.

(a) In the normed space (C([0, 1]), ∥ · ∥L∞), the subset X of nowhere vanishing functions.

(b) In the normed space (C([0, 1]), ∥ · ∥L2), the subset X of nowhere vanishing functions.

(c) In the normed space (L2(R), ∥ · ∥L2), the subset

X =
{
f ∈ L2(R) : f(x) = f(−x) for a.e. x ∈ R

}
.

Hint: It’s useful to recall that if uk → u in L2 then, up to picking a subsequence, there is a
null measure set N such that uk(x) → u(x) for all x /∈ N .

(d) (⋆) In the normed space (L2((0, 1)), ∥ · ∥L2), the subset

X =
{
f ∈ L2((0, 1)) : f ≥ 0 a.e. and

∫ 1

0

2f

1 + f
dx ≥ 1

}
.

Hint: observe that the map s 7→ 2s/(1 + s) is concave for s ≥ 0.

Solution:

(a) X is well-defined and open, but neither closed nor convex (and hence not a linear subspace). We
show openness: if u ∈ X then δ := minx∈[0,1] |u(x)| is strictly positive, so for any other v ∈ C([0, 1])
with ∥u− v∥L∞ < δ/2, we find

|v(x)| ≥ |u(x)| − |v(x)− u(x)| ≥ |u(x)| − ∥u− v∥L∞ ≥ δ − δ

2
> 0, ∀x ∈ [0, 1],

so v ∈ X. It is not closed, since the functions fk(x) = 2−k belong to X but their limit does not,
and X is not convex since the constant functions 1 ∈ X and −1 ∈ X, but 1

2 · 1 +
1
2 · (−1) = 0 /∈ X.

(b) X is well-defined, but not open nor closed nor convex. It is not closed nor convex by the same
examples as above. To see that X is not open, take the constant function 1 ∈ X. Define for ϵ > 0:

fϵ(x) =

{
ϵ−1x, x ∈ [0, ϵ],

1, x ∈ [ϵ, 1].

Note that fϵ(x) /∈ X, since fϵ(0) = 0. We estimate∫ 1

0
(1− fϵ(x))

2 dx =

∫ ϵ

0

(
1− x

ϵ

)2
dx ≤

∫ ϵ

0
1 dx = ϵ.

We see that ∥1 − fϵ∥L2 ≤
√
ϵ, showing that every open ball around the function 1 ∈ X contains

an element outside of X. In fact, for any element u ∈ X, a similar argument using the functions
uϵ(x) = min{ϵ−1x, u(x)} even shows that no open ball is contained in X.
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(c) X is well-defined, closed and a linear subspace (hence also convex). Recall that L2(R) is
defined as a quotient space (where functions agreeing almost everywhere are identified), so there is
something to check for well-definedness. If u(x) = v(x) for almost every x, then also u(−x) = v(−x)
for almost every x. This is because if A ⊂ R has full measure then also −A has full measure and
so does A ∩ (−A). Thus, the property u(x) = u(−x) a.e. is well-defined on L2(R).
To show that X is closed, let uk → u in L2(R). Then, up to taking a sub-sequence, there is a null
set N ⊂ R such that

uk(x) → u(x) and uk(−x) → u(−x) for all x ∈ R \N.

Thus, u(x)− u(−x) = limk→∞
(
uk(x)− uk(−x)

)
= 0 for almost every x ∈ R, so u ∈ X.

The fact that X is closed under linear combinations is immediate to check, let us refresh the full
argument which you probably have seen in Analysis III: if

u(x) = u(−x) for all x ∈ R \Nu and v(x) = v(−x) for all x ∈ R \Nv,

with |Nu| = |Nv| = 0, then |Nu ∪Nv| = 0 and for all x ∈ R \ (Nu ∪Nv) we have

αu(x) + βv(x) = αu(−x) + βv(−x).

(d) X is well defined, closed and convex. Well-defined because for all u ∈ L2, u ≥ 0, we have∫ 1

0

2u(x)

1 + u(x)
dx ≤

∫ 1

0
2 dx = 2,

since 2s/(1 + s) ∈ [0, 2) for all s ∈ [0,∞).

X is convex because the function ψ : s 7→ 2s
1+s is concave for s ∈ [0,∞). So if u, v ∈ X and t ∈ [0, 1]

we have for almost every x

tu(x) + (1− t)v(x)

1 + tu(x) + (1− t)v(x)
= ψ(tu(x) + (1− t)v(x))

≥ tψ(u(x)) + (1− t)ψ(v(x)) = t
u(x)

1 + u(x)
+ (1− t)

v(x)

1 + v(x)
.

Integrating both sides of this inequality we find∫ 1

0
2

tu(x) + (1− t)v(x)

1 + tu(x) + (1− t)v(x)
dx ≥ t

∫ 1

0

2u(x)

1 + u(x)
dx+ (1− t)

∫ 1

0

2v(x)

1 + v(x)
dx ≥ t · 1+ (1− t) · 1 = 1,

which shows that tu+ (1− t)v ∈ X.

To check that X is closed, we pick a sequence uk ∈ X with uk → u in L2. We want to show that
also u ∈ X. We find a subsequence (which we don’t re-label) such that also uk(x) → u(x) for all
x ∈ (0, 1) \N with |N | = 0. Since the uk were nonnegative we find that also u ≥ 0 a.e. It remains
to show that

∫ 1
0

u
1+u dx ≥ 1. To do so we invoke the dominated convergence theorem, i.e. since the

integrands are bounded by a common function∣∣∣ 2uk
1 + uk

∣∣∣ ≤ 2 uniformly in k,

we can exchange pointwise limit and integral and find∫ 1

0

2u

1 + u
= lim

k→∞

∫ 1

0

2uk
1 + uk

≥ 1.
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