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Exercise 3.1. ♣
Which of the following pairs (vector space, bilinear form) are Hilbert spaces?

(a) V := L2(R;C) and ⟨u, v⟩ :=
∫
R u(t)v̄(t)

dt
1+t2

.

(b) V := {real polynomials of degree at most N} and ⟨p, q⟩ := p( d
dx
)|x=0 q.

Hint: If p(X) is a polynomial, then p( d
dx
)|x=0 is the differential operator obtained by re-

placing X with d
dx

and then evaluating at x = 0. Example: if p(X) = X2 + 3 then

p( d
dx
)|x=0q = q′′(0) + 3q(0). Observe that

(
d
dx

)j
x=0

xk = δkj k!.

(c) V := L1
(
(0, 1);R

)
and ⟨u, v⟩ :=

∫ 1

0
u(x)v(x) dx.

(d) V := Qd and ⟨x, y⟩ :=
∑d

k=1 xkyk.

Solution:

(a) This is an inner product space, as follows directly from the properties of integrals and complex
conjugation. However, it is not complete: the completion is the space L2(R, µ) with respect to the
measure µ = dt

1+t2
. To see incompleteness concretely, take uϵ(t) := e−ϵt2 ∈ V for ϵ > 0. We have

that uϵ → 1 as ϵ → 0 with respect to the norm induced by the inner product:

∥f∥2 =
∫
R

|f(t)|2

1 + t2
dt.

Indeed ∫
R

|uϵ(t)− 1|2

1 + t2
dt → 0

by the dominated convergence theorem, since uϵ ≤ 1 ∈ L2(R, µ). But then V cannot be complete
because {uϵ} is Cauchy (being convergent), but 1 /∈ V .

(b) We first check that this is an inner product space, then completeness follows from finite dimen-
sionality. Linearity follows from the linearity of differentiation, so we just have to check that the
given bilinear form is positive definite and symmetric. For p, q ∈ V we write

p(X) =

N∑
j=0

pjX
j , q(X) =

N∑
j=0

qjX
j ,

and compute

⟨p, q⟩ =
N∑
j=0

pjq
(j)(0) =

N∑
j=0

j! pjqj ,

which is clearly symmetric in p ↔ q. We used that
(

d
dx

)j
x=0

xk = δkj k!. We remark that in the

basis [1, X, . . . ,XN ] the scalar product is given by the matrix

diag[0!, 1!, 2!, . . . , N !],

which is positive definite having positive eigenvalues (recall 0! = 1). The norm squared is

∥p∥2 =
N∑
j=0

j! |pj |2.
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(c) No, the given bilinear form is not even well-defined as the integral might diverge. For instance,
u(x) = x−1/2 satisfies u ∈ L1

(
(0, 1);R

)
, but ⟨u, u⟩ = +∞.

(d) It is not even an R-vector space, as the multiplication of a rational number by a real number
does not give, in general, a rational number.

If we think Qd as a vector space over Q the scalar product is well defined, so we have a norm, but
the resulting space is not complete, for the same reason that Q is not complete with respect to the
absolute value.

Exercise 3.2.
Let

V :=
{
u ∈ C2((0, 1)) ∩ C([0, 1]) : u′, u′′ bounded on (0, 1), u(0) = 0

}
Prove or disprove that the following maps ∥ · ∥ : V → R are norms (no need to check
completeness) and determine whether they arise from an inner product.

(a) ∥u∥ =
(∫ 1

0
|u′′(x)|2dx

)1/2

(b) ∥u∥ =
(∫ 1

0
|u′(x)|2dx

)1/2

(c) ∥u∥ =
(∫ 1

0
|u′(x)|3dx

)1/3

(d) ∥u∥ =
(∫ 1

0

∫ 1

0
|u(x)−u(y)|2

|x−y|2 dxdy
)1/2

Hint: Recall the Minkowski inequality: for p ∈ (1,+∞) and f, g ∈ Lp(X,µ), we have
(
∫
X
|f + g|pdµ)1/p ≤ (

∫
X
|f |pdµ)1/p + (

∫
X
|g|pdµ)1/p.

Solution: In all four cases, absolute homogeneity is apparent and the triangle inequality follows
by applying the Minkowski inequality to the respective integrals. We check positive definiteness.

(a) ∥ · ∥ is not positive definite and hence not a norm. Indeed, the function f(x) = x belongs to V
and ∥f∥ = 0, but f ̸= 0.

(b) If ∥u∥ = 0, then u′ = 0 almost everywhere, so u′(x) = 0 for all x ∈ (0, 1) by the continuity of
u′. Thus, u is constant on (0, 1) and hence on [0, 1] by continuity of u. Since u(0) = 0, we must
have u = 0. This shows that ∥ · ∥ defines a norm on V . It is induced by the inner product

⟨u, v⟩ =
∫ 1

0
u′(x)v′(x) dx

as can readily be seen.

(c) The exact same argument as in the previous case shows ∥u∥ = 0 =⇒ u = 0, so ∥ · ∥ defines a
norm on V . This norm is not induced by an inner product. Indeed, the parallelogram law is not
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satisfied, as can be seen by taking u(x) = x and v(x) = x2

2 . Then

∥u+ v∥2C + ∥u− v∥2C =

(∫ 1

0
|1 + x|3dx

)2/3

+

(∫ 1

0
|1− x|3dx

)2/3

= (15/4)2/3 + (1/4)2/3

2∥u∥2C + 2∥v∥2C = 2

(∫ 1

0
dx

)2/3

+ 2

(∫ 1

0
|x|3dx

)2/3

= 2 + 2(1/4)2/3

and the two values differ.

(d) Note first that ∥ · ∥ is well-defined, since
∣∣u(x)−u(y)

x−y

∣∣ is bounded by supt∈(0,1) |u′(t)|. If ∥u∥ = 0

then u(x)− u(y) = 0 for almost every (x, y) ∈ (0, 1)2, so in fact u(x) = u(y) for all x, y ∈ (0, 1) by
continuity, i.e. u is constant. Again u(0) = 0 then implies u = 0. Thus, ∥ · ∥ defines a norm, which
is induced by the inner product

⟨u, v⟩ =
∫ 1

0

∫ 1

0

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy.

Exercise 3.3.
Consider the Hilbert space H := L2

(
(−1, 1)

)
. Apply the Gram-Schmidt algorithm to the

ordered set {1, x, x2} ⊂ H, and find three orthonormal polynomials e0(x), e1(x), e2(x).

Solution: The polynomials 1 and x are already orthogonal in H for parity reasons, so normalizing
them we find

e0(x) = 1/
√
2, e1(x) =

√
3

2
x.

We calculate the inner product of x2 with e0 and e1:

⟨x2, e0(x)⟩ =
1√
2

∫ 1

−1
x2 dx =

√
2/3, ⟨x2, e1(x)⟩ =

√
3

2

∫ 1

−1
x3 dx = 0.

Then
x2 − ⟨x2, e0⟩e0 − ⟨x2, e1⟩e1 = x2 − 1/3

is orthogonal to e0 and e1. We compute its norm-squared:∫ 1

−1
(x2 − 1/3)2 dx = 8/45,

and normalize to find

e2(x) =

√
5

2
√
2
(3x2 − 1).

3 / 5



D-MATH
Prof. Francesca Da Lio

Analysis IV (Fourier Theory and Hilbert Spaces)
Solution Sheet 3

ETH Zürich
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Exercise 3.4.
Let (H, ⟨·, ·⟩) be a Hilbert space. Show that a linear subspace of H is itself a Hilbert space
with respect to ⟨·, ·⟩ if and only if it is closed.

Solution: Let V ⊂ H be a linear subspace. Note that the inner product ⟨·, ·⟩ on H makes (V, ⟨·, ·⟩)
into an inner product space. We must show that V is complete with respect to the induced norm
if and only if V is closed in H.

Assume that V is closed. Let (xn)n∈N be a Cauchy sequence in V . Then (xn)n∈N is also Cauchy in
H (since the norm on V is just the norm on H restricted to V ). Thus, by completeness of H, we
have xn → x ∈ H, i.e. the sequence converges to some x ∈ H. Since V ⊂ H is closed, it contains
all its limit points, so we must have x ∈ V . Thus, xn → x ∈ V , so every Cauchy sequence in V
converges in V , i.e. V is complete.

For the converse, assume that V is complete. Let (xn)n∈N be a sequence with xn ∈ V for all n ∈ N
and xn → x ∈ H. Since xn converges in H, it is a Cauchy sequence with respect to the norm.
Since xn ∈ V and V is complete, xn must converge to some y in V . Since limits with respect to a
norm are unique (follows from positive definiteness of the norm), we must have y = x ∈ V . Thus,
V contains all its limit points, i.e. it is closed in H.

Exercise 3.5. ⋆
This exercise is concerned with a quantitative study of the Cauchy-Schwarz inequality.

(a) Let H be a real inner product space. We write x · y for the inner product of x, y ∈ H
and |x| for the induced norm. Prove the following identity:

|x||y| − x · y =
|x||y|
2

∣∣∣ x|x| − y

|y|

∣∣∣2 ≥ 0, ∀x, y,∈ H.

(b) Characterize the set C ⊂ H × H of pairs of vectors that saturate the Cauchy-Schwarz
inequality, i.e. x · y = |x||y|. Plot C in the case H = R.
(c) If x, y are ϵ-close to saturating the Cauchy-Schwarz inequality, that is

x · y ≥ (1− ϵ)|x||y|,

then how close are x, y to the set C? Find an upper bound for the quantity

dist
(
(x, y), C

)2
:= inf

(x′,y′)∈C
|x− x′|2 + |y − y′|2.

Solution:

(a) If x = 0 or y = 0, then both sides of the identity vanish. For x, y ̸= 0 we expand the norm
squared on the right hand side:∣∣∣ x|x| − y

|y|

∣∣∣2 = ( x

|x|
− y

|y|

)
·
( x

|x|
− y

|y|

)
= 1− 2

x · y
|x||y|

+ 1 = 2
(
1− x · y

|x||y|

)
.

Inserting this, the identity follows.
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(b) From the above identity, we see that (x, y) ∈ C if and only if

x = 0, or y = 0 or
x

|x|
=

y

|y|
.

For x, y ̸= 0, we write x = αξ, y = βη with α, β > 0 and |ξ| = |η| = 1. Then the last equality above
implies η = ξ. The cases x = 0 and y = 0 can be included by allowing α, β to vanish. Thus, C can
be parametrized as follows:

C =
{
(αξ, βξ) : α ≥ 0, β ≥ 0, ξ ∈ H, |ξ| = 1

}
.

That is, x, y need to be parallel and oriented the same in order to saturate C.-S. If H = R, then
the set C ⊂ R2 consists of the (closed) first and third quadrants.

(c) We plug the inequality x · y ≥ (1− ϵ)|x||y| into the identity from the first part and find

|x||y|
2

∣∣∣ x|x| − y

|y|

∣∣∣2 = |x||y| − x · y ≤ ϵ|x||y|,

which gives ∣∣∣ x|x| − y

|y|

∣∣∣ ≤ √
2ϵ.

Since x/|x| and y/|y| are the directions of the vectors x, y this is telling us that if x, y ϵ-saturate the
C.-S. inequality, then the directions of x and y are O(

√
ϵ) close to each other (on the unit sphere).

This is already a somewhat satisfying answer, but we want to estimate

dist((x, y), C)2 := inf
(x′,y′)∈C

|x− x′|2 + |y − y′|2.

In order to do so, we make a judicious guess for (x′, y′) ∈ C close to (x, y). Taking x′ = x, we have
that y′ = |y| x

|x| satisfies (x
′, y′) with |y′| = |y|. We find

|x− x′|2 + |y − y′|2 =
∣∣∣y − |y| x

|x|

∣∣∣2 = |y|2
∣∣∣ x|x| − y

|y|

∣∣∣
We find a similar expression by choosing y′ = y, x′ = |x| y

|y| . Thus, the infimum satisfies

dist((x, y), C)2 ≤ min{|x|2, |y|2}
∣∣∣ x|x| − y

|y|

∣∣∣2 ≤ 2ϵmin{|x|2, |y|2} ≤ 2ϵ|x||y|,

where in the last inequality we used that for any pair of nonnegative numbers min{a, b} ≤
√
ab.

In other words, we have proved the quantitative Cauchy-Schwarz inequality:

0 ≤ 1

2
dist((x, y), C)2 ≤ |x||y| − x · y for all x, y,∈ H.
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