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Exercise 6.1. ♣
For each of the following Hilbert spaces H and maps φ : H → C determine whether φ defines
a continuous linear functional on H.

(a) H = L2([−π, π]) and φ(f) = c1(f) (the first Fourier coefficient of f).

(b) H = L2([−1, 1]) and φ(f) = f(0).

(c) H = ℓ2(N) and φ((xn)n∈N) = x3 + 2x7.

(d) H = L2([−1, 1]) and φ(f) =
∫ 1

−1
(1 + f)2 dx.

(e) H = L2(R) and φ(f) = 1
3

∫ 1

−1
f dx.

(f) H = ℓ2(N) and φ((xn)n∈N) =
∑∞

n=1
xn

n2 .

Solution:

(a) This is a continuous linear functional since by definition it is given by the L2 pairing f → ⟨f, e1⟩
with e1 =

1
2πe

ix.

(b) This functional is not even well defined on L2, as L2 functions are only defined up to sets of
measure zero.

(c) This is a continuous linear functional given by the ℓ2 pairing with e3 + 2e7 ∈ ℓ2(N), where
{ek}∞k=1 is the standard basis of ℓ2(N).

(d) This functional is not linear, since φ(0) ̸= 0.

(e) This is a continuous linear functional given by the L2 pairing with 1
3χ[−1,1] ∈ L2(R).

(f) This is a continuous linear functional given by the ℓ2 pairing with (1/n2)n∈N ∈ ℓ2(N).

Exercise 6.2.
Show that any f ∈ C1([−π, π]) with f(π) = f(−π) and

∫ π

−π
f(x) dx = 0, satisfies

∥f∥L2([−π,π]) ≤ ∥f ′∥L2([−π,π]).

Solution: Note that both f and f ′ are continuous functions on [−π, π] and hence are contained
in L2([−π, π]). The Fourier coefficients of the derivative satisfy cn(f

′) = incn(f) for all n ∈ N.
Applying Parseval’s identity and using c0(f) =

1
2π

∫ π
−π f(x) dx = 0, we find

∥f∥2L2([−π,π]) = 2π
∑

n∈Z\{0}

|cn(f)|2 ≤ 2π
∑
n∈Z

n2|cn(f)|2 = 2π
∑
n∈Z

|cn(f ′)|2 = ∥f ′∥2L2([−π,π]).
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Exercise 6.3.
Let f ∈ C(R) be a 2π-periodic continuous function satisfying c0(f) = 0.

(a) Show that F (t) =
∫ t

0
f(x) dx is also a 2π-periodic function and determine its Fourier

coefficients cn(F ) for all n ̸= 0.

(b) Determine the Fourier coefficient c0(F ) in terms of the cn(f).

Solution:

(a) We compute

F (t+ 2π)− F (t) =

∫ t+2π

t
f(t) dt =

∫ 2π

0
f(t) dt = 2πc0(f).

Since c0(f) = 0 by hypothesis F is 2π-periodic. We have F ′ = f by the fundamental theorem of
calculus (since f is continuous). Thus, the Fourier coefficients satisfy (integrate by parts)

cn(f) = incn(F ) ∀n ∈ Z, =⇒ cn(F ) =
cn(f)

in
∀n ∈ Z \ {0}.

(b) Since F ∈ C1(R), its Fourier series converges uniformly. In particular, F (x) =
∑

n∈Z cn(F )einx

for each x ∈ R. Applying this to x = 0, we find

0 = F (0) =
∑
n∈Z

cn(F ) = c0(F ) +
∑

n∈Z\{0}

cn(f)

in
.

Thus,

c0(F ) = −
∑

n∈Z\{0}

cn(f)

in
.

Exercise 6.4.

(a) Is there an element of L2((0, 2π)) whose Fourier series is

∞∑
n=2

sin(nx)

log(n)
?

(b) Show that the sequence above converges pointwise for each x ∈ (0, 2π).

Hint: Use Dirichlet’s test.

Solution:

(a) Note that ∑
n=2

sin(nx)

log(n)
=

∑
n=2

1

2i log(n)

(
einx − e−inx

)
.
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Thus, the Fourier coefficients of such a function would be c0 = c1 = c−1 = 0 and

cn(f) =
sgn(n)

2i log(|n|)
, |n| > 2.

If these were the Fourier coefficients of an L2 function, then by Parseval’s identity the sequence

∞∑
n=2

1

log(n)2

would have to converge. Since this sum is divergent, there is no such function.

(b) We show that for any fixed x ∈ (0, 2π) the partial sums SN =
∑N

n=2 sin(nx) remain bounded
independently of N . Since log(n)−1 is a monotone decreasing sequence converging to 0, Dirichlet’s

test then implies that
∑∞

n=2
sin(nx)
log(n) converges. Note that

N∑
n=1

sin(nx) =
1

2i

N∑
n=0

(
einx − e−inx

)
.

Summing a geometric series we find

N∑
n=0

einx =
1− ei(N+1)x

1− eix
, =⇒

∣∣∣ N∑
n=0

einx
∣∣∣ ≤ 2

|1− eix|
,

so we can estimate ∣∣∣ N∑
n=0

sin(nx)
∣∣∣ ≤ 1

|1− eix|
+

1

|1− eix|
.

Thus, the partial sums SN are bounded independently of N (recall that x /∈ 2πZ).
Remark: In fact, using Dirichlet’s test one can show that on any compact set in (0, 2π) the

sequence
∑∞

n=2
sin(nx)
log(n) converges uniformly to a continuous function. Nevertheless, it is not the

Fourier series of an L2 function.

Exercise 6.5.
The purpose of this exercise is to prove the Riemann–Lebesgue lemma in the special case of
a characteristic function of a bounded interval in R.
Let p : R → C be a bounded T -periodic function. Let f = 1[a,b] be the characteristic function
of a bounded interval [a, b] ⊂ R for some a < b. Show that

lim
x→±∞

∫
R
f(t)p(xt) dt = µ

∫
R
f(t) dt, (1)

where µ is the average of p over one period

µ =
1

T

∫ T

0

p(t) dt.
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Remark: The Riemann–Lebesgue lemma says that (1) in fact holds for any f ∈ L1(R).
How might one use this exercise to prove the more general version?

Solution: Without loss of generality we can assume that µ = 0. The case µ ̸= 0 then follows by
replacing p with p− µ. Note that∫

R
f(t)p(xt) dt =

∫
R
1[a,b]p(xt) dt =

∫ b

a
p(xt) dt.

We first consider the case x → +∞. Thus, let x > 0 and make the substitution u = xt. Then∫ b

a
p(xt) dt =

1

x

∫ bx

ax
p(u) du.

By the periodicity of p, the integral of p over any interval of length T is Tµ = 0, i.e. we have∫ c+T

c
p(u) du =

∫ T

0
p(u) du = 0, for any c ∈ R.

For fixed x > 0, let m ∈ N be the largest integer such that mT ≤ x(b − a). We can partition the
interval [xa, xb] as

[xa, xb] =

m⋃
k=1

[
xa+ (k − 1)T, xa+ kT

)
∪
[
xa+mT, xb

]
,

where
∣∣[xa+mT, xb]

∣∣ ≤ T . We then have∫ bx

ax
p(u) du =

m∑
k=1

∫ xa+kT

xa+(k−1)T
p(u) du+

∫ xb

xa+mT
p(u) du =

∫ xb

xa+mT
p(u) du.

We estimate∣∣∣∫ xb

xa+mT
p(u) du

∣∣∣ ≤ ∫ xb

xa+mT
|p(u)| du ≤

∫ xa+(m+1)T

xa+mT
|p(u)| du =

∫ T

0
|p(u)| du ≤ T sup

t∈[0,T ]
|p(t)| < ∞

by the boundedness of p. It follows that for all x > 0 we have∣∣∣∫
R
f(t)p(xt) dt

∣∣∣ = ∣∣∣∫ b

a
p(xt) dt

∣∣∣ ≤ 1

|x|

∫ T

0
|p(u)| du x→∞−−−→ 0.

For x < 0 the proof is the same, except that one considers the interval [xb, xa].

Remark: It is evident that the result proved here for f a characteristic function of an interval
also applies when f is a step function (finite linear combinations of characteristic functions). By
approximating a function f ∈ L1(R) by step functions, one can show that with p as in the exercise,
we in fact have

lim
x→±∞

∫
R
f(t)p(xt) dt = µ

∫
R
f(t) dt for all f ∈ L1(R).

This result is known as the Riemann–Lebesgue lemma.
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Exercise 6.6.
Use the Riemann-Lebesgue lemma (see the Remark in Exercise 6.5 or Lemma 2.32 in the
lecture notes) to compute the following limits.

(a) Let A ⊂ R be a Lebesgue measurable set with finite Lebesgue measure |A| < ∞. Com-
pute

lim
m→∞

∫
A

sin2(mx) dx.

(b) Let f : R → R be continuous and periodic of period 1. Compute

lim
ϵ→0+

√
ϵ

∫
R
f(x)e−ϵπx2

dx.

Solution:

(a) Let f = 1A be the characteristic function of the set A. Since A has finite Lebesgue measure,
we have f ∈ L1(R). Let p(x) = sin2(x). Then p is 2π-periodic and the average of p over one period
is

µ =
1

2π

∫ 2π

0
sin2(x) dx =

1

2π

∫ 2π

0

1− cos(2x)

2
dx =

1

2
,

where we used that cos(2x) = cos2(x)− sin2(x) = 1− 2 sin2(x) and
∫ 2π
0 cos(2x) dx = 0. Thus, the

Riemann-Lebesgue lemma gives

lim
m→∞

∫
A
sin2(mx) dx = lim

m→∞

∫
R
f(x)p(mx) dx = µ

∫
R
f(x) dx =

1

2

∫
R
1A dx =

|A|
2

.

(b) We make the substitution t =
√
ϵx and find

√
ϵ

∫
R
f(x)e−ϵπx2

dx =

∫
R
f
(

t√
ϵ

)
e−πt2 dt.

Since e−πt2 ∈ L1(R) and f is 1-periodic, we can apply the Riemann-Lebesgue lemma to find

lim
ϵ→0+

∫
R
f
(

t√
ϵ

)
e−πt2 dt =

∫
R
e−πx2

dx

∫ 1

0
f(x) dx =

∫ 1

0
f(x) dx,

where we used that the Gaussian integral satisfies
∫
R e−πx2

dx = 1.
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