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Exercise 7.1. ♣
Which of the following series is the Fourier series of a function f ∈ L2((−T, T )) for an
appropriate choice of T > 0?

(a)
∑∞

n=1
cos(nx)√

n
.

(b)
∑∞

n=2
sin(nπx)√
n log(n)

.

(c)
∑∞

n=1
cos(nx)

n2 +
∑∞

n=1
sin(nx)

n
.

(d)
∑∞

n=1
e2πinx

n
√
n
.

Solution: One must check that the series converge in L2((−T, T )), where 2T is the period of
the respective trigonometric polynomials. (Note that the trigonometric polynomials are of course
also periodic of period k · 2T for any k ∈ N, but this perspective does not change anything,
since for these series with 2T -periodic terms convergence in L2((−T, T )) and L2((−kT, kT )) are
equivalent.) Indeed, if the series does not converge in L2, then it cannot be the Fourier series of an L2

function. Conversely, if the series does converge in L2 then the limit is an L2-function whose Fourier
series, by uniqueness, is given by the expression in question. Since

{
1√
2T

e
π
T
nx
}
n∈Z, respectively{

1√
2T

, 1√
T
cos( πT nx),

1√
T
sin( πT nx)

}
n∈N, are orthonormal bases of L2((−T, T )), convergence in L2 is

equivalent to the coefficients being square-summable.

(a) This is not the Fourier series of an L2 function. Indeed, the series
∑∞

n=1
1
n is divergent.

(b) This is the Fourier series of a function in L2((−1, 1)). Indeed, the series
∑∞

n=2
1

n log(n)2
is

convergent. This can be seen from convergence of the integral
∫∞
2

dx
x log(x)2

=
∫∞
log(2)

dy
y2

< ∞.

(c) This is the Fourier series of a function in L2((−π, π)). Indeed, the series
∑∞

n=1
1
n4 and

∑∞
n=1

1
n2

are both convergent.

(d) This is the Fourier series of a function in L2((−1
2 ,

1
2)). Indeed, the series

∑∞
n=1

1
n3 is convergent.

In fact, this is even the Fourier series of a continuous function: the convergence of
∑∞

n=1
1

n
√
n
implies

convergence of the Fourier series with respect to the uniform norm, hence in the space of continuous
functions.

Exercise 7.2.
Let f, g ∈ C(R) be 2π-periodic continuous functions. Compute the Fourier coefficients of
each of the following 2π-periodic functions in terms of the Fourier coefficients of f, g.

(a) fτ (x) := f(x− τ) for some τ ∈ R.
(b) f · g(x) := f(x)g(x).

(c) f ∗ g(x) :=
∫ π

−π
f(x− t)g(t) dt.
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Solution:

(a) We compute

cn(fτ ) =
1

2π

∫ π

−π
fτ (x)e

−inx dx =
1

2π

∫ π

−π
f(x− τ)e−inx dx

=
1

2π

∫ π−τ

−π−τ
f(y)e−in(y+τ) dy =

e−inτ

2π

∫ π

−π
f(y)e−iny dy = e−inτ cn(f),

where we made the change of variable y = x − τ and used the fact that both f and ein(·) are
2π-periodic.

(b) Writing g(x) =
∑

m∈Z cm(g)eimx as a Fourier series, we find

cn(f · g) = 1

2π

∫ π

−π
f(x)g(x)e−inx dx =

1

2π

∫ π

−π

∑
m∈Z

f(x)cm(g)eimxe−inx dx

=
1

2π

∑
m∈Z

cm(g)

∫ π

−π
f(x)e−i(n−m)x dx =

∑
m∈Z

cn−m(f)cm(g).

Notice that exchanging the order of integration and the sum is justified since
∑

m∈Z cm(g)eimx

converges in L2((−π, π)) and integration against the L2 function f(x)e−inx defines a continuous
linear functional on L2((−π, π)). Equivalently, one could also use Fubini’s theorem, since applying
Cauchy-Schwarz to the integral, we find∑

m∈Z

∫ π

−π
|f(x)cm(g)| dx ≤

∑
m∈Z

2π|cm(g)|2
∫ π

−π
|f(x)|2 dx < ∞.

(c) We compute

cn(f ∗ g) = 1

2π

∫ π

−π

∫ π

−π
f(x− t)g(t)e−inx dtdx =

1

2π

∫ π

−π

∫ π

−π
f(x− t)e−in(x−t)g(t)e−int dxdt

=
1

2π

∫ π

−π

∫ π−t

−π−t
f(y)e−inyg(t)e−int dydt =

1

2π

∫ π

−π
f(y)e−iny dy

∫ π

−π
g(t)e−int dt

= 2πcn(f)cn(g),

where we used Fubini’s theorem to exchange the order of integration, applied a change of variable
y = x− t and used the periodicity of f .

Exercise 7.3.
The goal of this exercise is to show that every function in L2((0, π);R) can be expressed as
a real Fourier series of sines.

(a) Show that if f ∈ L2((−π, π);R) is odd then its Fourier coefficients cn(f) are purely
imaginary and c0(f) = 0;
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(b) Show that if f ∈ L2((−π, π);R) is odd then its N -th Fourier partial sum satisfies

SNf(x) =
N∑

n=1

2icn(f) sin(nx).

(c) Given g ∈ L2((0, π);R) show that S̃Ng → g in L2((0, π);R) as N → ∞, where

S̃Ng(x) :=
N∑

n=1

an(g) sin(nx), an(g) :=
2

π

∫ π

0

g(x) sin(nx) dx.

(d) Conclude that
{√

2
π
sin(nx)

}
n∈N is a Hilbert basis for L2((0, π);R).

Solution:

(a) We compute

cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx

=
1

2π

∫ π

0
f(x)e−inx dx+

1

2π

∫ 0

−π
f(x)e−inx dx

=
1

2π

∫ π

0
f(x)e−inx dx+

1

2π

∫ π

0
f(−x)einx dx

=
1

2π

∫ π

0
f(x)(e−inx − einx) dx

=
−i

π

∫ π

0
f(x) sin (nx) dx,

where we used the change of variables x 7→ −x. Since f(x) sin(x) ∈ R by assumption on f , we
conclude that cn(f) ∈ iR. Furthermore, we see that c0(f) = 0.

(b) Note that for n ∈ Z we have

c−n(f) =
−i

π

∫ π

0
f(x) sin (−nx) dx =

i

π

∫ π

0
f(x) sin (nx) dx = −cn(f).

Thus, we find

SN (f) =
N∑

n=−N

cn(f)e
inx = c0(f) +

N∑
n=1

(
cn(f)e

inx + c−n(f)e
−inx

)

=

N∑
n=1

cn(f)
(
einx − e−inx

)
=

N∑
n=1

2icn(f) sin(nx)

(c) We extend g to an odd function on (−π, π). Let f : (−π, π) → R be defined by

f(x) =

{
g(x), if x ∈ (0, π)

−g(−x), if x ∈ (−π, 0).
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(Note that the value at x = 0 is irrelevant since L2 functions are only defined up to null sets
anyway.) Then f ∈ L2((−π, π);R) is odd and we may use the previous subquestion to compute
the N -th partial sum of its Fourier series:

SNf(x) =
N∑

n=1

2icn(f) sin(nx) =
N∑

n=1

an(g) sin(nx) for a.e. x ∈ (−π, π),

where we used the first subquestion to compute

2icn(f) =
2

π

∫ π

0
f(x) sin(nx) dx =

2

π

∫ π

0
g(x) sin(nx) dx = an(g).

Thus, we have SNf |(0,π) = S̃Ng. Since SNf → f in L2((−π, π)) (Corollary 2.7 in the lecture notes),
we conclude convergence:wwS̃Ng − g

ww
L2(0,π)

=
wwSNf |(0,π) − f |(0,π)

ww
L2(0,π)

≤ ∥SNf − f∥L2(−π,π)
N→0−−−→ 0.

(d) The previous subquestion shows that Span
{√

2/π sin(kx)
}
n∈N

is dense in L2((0, π);R). It

remains to show L2-orthonormality. Recall the identity

sin(x) sin(y) =
1

2

(
cos(x− y)− cos(x+ y)

)
.

For n,m ≥ 1 with n ̸= m, we compute〈√
2/π sin(nx),

√
2/π sin(mx)

〉
L2((−π,π))

=
2

π

∫ π

0
sin(nx) sin(mx) dx

=
1

π

∫ π

0

(
cos((n−m)x)− cos((n+m)x)

)
dx

=
1

π

([
1

n−m
sin((n−m)x)

]π
0

+

[
1

n+m
sin((n+m)x)

]π
0

)
= 0.

Furthermore, www√
2/π sin(nx)

www2

L2((−π,π))
=

2

π

∫ π

0
sin(nx)2 dx

=
1

π

∫ π

0

(
1− cos(2nx)

)
dx

=
1

π

(
π −

[
1

2n
sin(2nx)

]π
0

)
= 1.

Exercise 7.4.
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Note that the Fourier coefficients cn(f) =
1
2π

∫ π

−π
f(x)e−inx dx are in fact well-defined for any

f ∈ L1((−π, π)). However, the Fourier series of an L1 function does not necessarily converge.
The goal of this exercise is to show that if cn(f) = 0 for all n ∈ Z, then f = 0 a.e.

(a) For f ∈ L1((−π, π)), we define

fr(x) =
∑
n∈Z

cn(f)r
|n|einx, for 0 ≤ r < 1.

Show that fr is well-defined for all r ∈ [0, 1) and can be written as a convolution:

fr(x) = Pr ∗ f(x) :=
∫ π

−π

Pr(x− y)f(y) dy, where Pr(x) =
1

2π

∑
n∈Z

r|n|einx.

Remark: Pr is known as the Poisson kernel.

(b) Show that

Pr(x) =
1

2π
· 1− r2

1− 2r cos(x) + r2
.

(c) Show that the family (Pr)0≤r<1 is an approximate identity. That is,

• Pr ≥ 0 and
∫ π

−π
Pr(x) dx = 1 for all r ∈ [0, 1).

• for all δ > 0 we have
∫
{δ<|x|<π} Pr(x) dx → 0 as r → 1−.

(d) Show that fr converges to f in L1((−π, π)) as r → 1−.
Hint: Use exercise 13.7 from Analysis III.

(e) Conclude that if f satisfies cn(f) = 0 for all n ∈ Z, then f = 0 a.e.

Solution:

(a) Note that

|cn(f)| =
∣∣∣ 1
2π

∫ π

−π
f(x)e−inx dx

∣∣∣ ≤ 1

2π
∥f∥L1((−π,π)), ∀n ∈ Z.

We thus have
∑

n∈Z |cn(f)r|n|einx| ≤
∑

n∈Z r
|n| < ∞ for all r ∈ [0, 1) by convergence of the

geometric series. Thus, the sum defining fr(x) converges for each x ∈ (−π, π). Using the definition
of Fourier coefficients, we find

fr(x) =
1

2π

∑
n∈Z

∫ π

−π
f(y)e−inyr|n|einx dy =

∫ π

−π
f(y) · 1

2π

∑
n∈Z

r|n|ein(x−y) dy = Pr ∗ f(x),

where we used Fubini to exchange the sum and the integral.

(b) Fix r and x and note that

∑
n∈Z

r|n|einx =
∞∑
n=0

rneinx +
∑
n=1

rne−inx =
∞∑
n=0

ωn +
∞∑
n=1

ωn,
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where we defined the complex number ω = reix. Since |ω| < 1, the geometric series above are
convergent and we find

∞∑
n=0

ωn +
∑
n=1

ωn =
1

1− ω
+
( 1

1− ω
− 1

)
=

1

1− ω
+

ω

1− ω
=

1− |ω|2

1− 2Re(ω) + |ω|2
.

We conclude by inserting the definition of ω.

(c) Since |r cos(x)| ≤ r and 0 ≤ r < 1, the non-negativity of Pr can be seen from the explicit
formula. Using the fact that

∫ π
−π e

inx for all n ̸= 1, we find from the definition of Pr:∫ π

−π
Pr(x) =

1

2π

∑
n∈Z

∫ π

−π
r|n|einx dx =

1

2π

∫ π

−π
r0 dx = 1,

where we used Fubini to exchange the sum and the integral. For the second property, we write

Pr(x) =
1− r2

(1− r)2 + 2r(1− cos(x))
≤ 1− r2

2r(1− cos(x))
.

Fix δ > 0 and note that 1 − cos(x) ≥ c for some c and all δ < |x| < π. Taking r ≥ 1
2 , we find

Pr(x) ≤ 1
c (1 − r2) for all x ∈ (−π, π). Thus, Pr(x) → 0 as r → 1 uniformly on {δ < |x| < π} and

the exercise follows.

(d) We use the result of exercise 13.7 (d) from Analysis III on approximate identities. Since this
result is formulated in terms of convolution on R, we rewrite fr as such. Extending f periodically
to (−2π, 2π) and setting f = 0 on R \ (−2π, 2π), we have for x ∈ (−π, π)

Pr ∗ f(x) =
∫ π

−π
Pr(x− y)f(y) dy =

∫ x+π

x−π
Pr(y)f(x− y) dy =

∫ x+π

x−π
Pr(y)f(x− y) dy

=

∫ π

−π
Pr(y)f(x− y) dy =

∫
R
Pr(y)f(x− y) dy = f ∗ Pr(x),

where we used the change of variables y → x − y and the periodicity of f and Pr. In the final
equality, we set Pr(y) = 0 outside (−π, π). Note that f extended in this way lies in L1(R) and, by
the previous subquestion (Pr)0≤r<1 is an approximate identity in the sense exercise 13.7. Applying
13.7 (d), we see that fr = Pr ∗ f → f in L1(R) as r → 1, and thus also in L1((−π, π)). Note that
(1− r) corresponds to ε in exercise 13.7.

Remark: The convergence fr → f in L1 also implies that there is a subsequence (rk)k∈N with
rk → 1 such that frk(x) → f(x) for almost every x ∈ (−π, π). In fact, one can show the stronger
result fr(x) → f(x) for almost every x ∈ (−π, π) (without needing to pick a subsequence), see
Theorem 2.1 in Chapter 3 of “Real Analysis: Measure Theory, Integration, and Hilbert Spaces” by
Stein and Shakarchi.

(e) If f ∈ L1((−π, π)) satisfies cn(f) = 0 for all n, then fr(x) = 0 for each r ∈ [0, 1). Since
f = limr→1 fr in L1, we have f = 0 in L1((−π, π)), i.e. f(x) = 0 almost everywhere.
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Exercise 7.5.
Let f ∈ L1((−π, π)) and let cn(f) be its Fourier coefficients.

(a) Show that if
∑

n∈Z |cn(f)|2 < ∞, then in fact f ∈ L2((−π, π)).
Hint: Show that the sequence of Fourier partial sums SN is Cauchy in L2 and use the
previous exercise.

(b) Show that if
∑

n∈Z |cn(f)| < ∞, then in fact1 f ∈ Cper([−π, π]).
Hint: Show that the sequence of Fourier partial sums SN is Cauchy in the uniform norm
and use the previous exercise.

Solution:

(a) We write SNf(x) =
∑

|n|≤N cn(f)e
inx for the N -th Fourier partial sum. Note that SNf is

trivially in L2((−π, π)), since it is a finite sum of L2 functions. Let M,N ∈ N with M > N . Then
by the orthonormality of {ein(·)}n∈Z, we have

∥SM − SN∥2L2((−π,π)) =
∥∥∥ ∑
N<|n|≤M

cn(f)e
in(·)

∥∥∥2
L2((−π,π))

=
∑

N<|n|≤M

|cn(f)|2 −→ 0

as N,M → ∞, since by assumption this is the tail of a convergent series. By completeness of
L2((−π, π)), the sequence (SN )N∈N has a limit f̃ in L2((−π, π)). Moreover, for every n ∈ N, we
have

cn(f̃) =
1

2π

∫ π

−π
lim

N→∞
SNf(x)e−inx dx =

1

2π
lim

N→∞

∫ π

−π
SNf(x)e−inx dx = cn(f), (1)

where we used the L2 continuity of integration against e−in(·). Thus, f − f̃ ∈ L1((−π, π)) satisfies
cn(f − f̃) = 0 for every n ∈ Z. By the previous exercise, we must have f = f̃ almost everywhere.

(b) The solution is similar to the previous point, with the only difference that now we check that
(SN )N∈N is Cauchy with respect to the uniform norm. As a finite sum of continuous functions
SN ∈ Cper([−π, π];C) for every N ∈ N. For M > N , we use |einx| = 1 to find

∥SM − SN∥∞ = sup
x∈[−π,π]

∣∣∣ ∑
N<|n|≤M

cn(f)e
inx

∣∣∣ ≤ ∑
N≤|n|≤M

|cn(f)| −→ 0

as N,M → ∞, since again by assumption this is the tail of a convergent series. Cper([−π, π];C)
is complete with respect to the supremum norm and SN is Cauchy, so SN → f̃ ∈ Cper([−π, π];C).
(Note that the subspace Cper([−π, π]) ⊂ C([−π, π]) defined by f(π) = f(−π) is closed and hence
complete.) As before, it remains to show that f = f̃ almost everywhere, which follows from
cn(f̃) = cn(f) and the previous exercise. Note that here we use

∣∣∫ π
−π φ(x)e

−inx dx
∣∣ ≤ 2π∥φ(x)∥∞

to justify exchanging the limit and the integral in (1).

1This is a slight abuse of notation. More precisely: there exists a (necessarily unique) continuous and
periodic f̃ such that f̃ = f a.e.
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