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Exercise 8.1. ♣
For each of the following functions defined on [−π, π],

• f1(x) = tan(sin(x))

• f2(x) = |x|2/3

• f3(x) = x

• f4(x) = e−x2

• f5(x) = |x|−1/2

answer the following questions using the theorems seen in class. If none of the convergence
theorems applies, that’s still a valid answer.

(a) Are the Fourier coefficients well-defined?

(b) Is it true that SN(f) → f in L2?

(c) Is it true that SN(f)(x) → f(x) for all x ∈ [−π, π]? Hint: Recall Theorem 2.28.

(d) Is it true that SN(f) → f in Cper? Hint: Recall Corollary 2.20.

Solution:

(a) All functions fk, k = 1, . . . , 5 are in L1(−π, π), so the Fourier coefficients are well-defined.

(b) L2 convergence holds for all functions that are of class L2, thus it is valid for f1, f2, f3, f4. It is
not valid for f5, since f5 /∈ L2 (if the convergence was true, it would imply that f5 ∈ L2).

(c) For f1, f4 the convergence is uniform (thus pointwise) since they are continuous with contin-
uous derivatives (including extrema!). For f2 pointwise convergence still holds, since f is Hölder
continuous in [−π, π]. As per f3, the function is clearly C1 in the interior of (−π, π) so we have
pointwise convergence there. We cannot possibly have pointwise convergence at x = ±π, simply
because f3(π) ̸= f3(−π), but SN (f3)(π) = SN (f3)(−π) for all N since {SN (f)}N are 2π periodic
functions. Finally, for f5 we have pointwise convergence only outside of 0, since the limit is not
defined in 0 and the function is locally Lipschitz outside of the origin.

(d) For f1, f4 we already observed that the convergence is uniform. Since all these functions are
continuous on periodic, we can say that the convergence happens in Cper. The function f2 is not
piecewise C1 (there is no partition of [−π, π] into closed intervals such that f2 is C1 on each closed
interval) thus we cannot apply any of the results we have seen that ensure uniform convergence.
On the other hand there is no obvious contradiction in the fact that SN (f2) → f2 uniformly. Thus
in this case we cannot apply our results directly, and this is a correct answer for the sake of the
exercise. Finally, since f3 and f5 are not continuous and periodic, they cannot be approximated
uniformly with their partial Fourier sums (the partial Fourier sums lie in Cper and uniform limit of
Cper functions lies in Cper).

Exercise 8.2.
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ETH Zürich
HS 2024

(a) Construct f : [−π, π] → R which is continuous, but not Hölder at x = 0.
Hint: try using 1/ log(x/2π).

(b) Let V be the vector space of sequences f : N → R such that

∥f∥V :=
(∑

k≥1

k2|f(k)|2
)1/2

< ∞.

Can you choose a scalar product on V that makes V a Hilbert space?
Hint: try to construct an L2 space over N with the right measure.

(c) Let V be the vector space of sequences f : N \ {0} → R such that

∥f∥V :=
∑
k≥1

k|f(k)| < ∞.

Can you choose a scalar product on V that makes V a Hilbert space?

(d) Explain the difference between the following spaces of (real) functions and provide ele-
ments that fit in one but none of the others:

Cper([−π, π];R), C2
per([−π, π];R), C((−π, π);R), C([−π, π];R).

Solution:

(a) Let f(t) = 1/ log( t
2π ) for t ∈ (0, π] and f(t) = 0 for t ∈ [−π, 0]. Then, f is continuous in [−π, π].

Suppose by contradiction that it is also Hölder continuous in [−π, π]; this means that there exists
α ∈ (0, 1), C > 0 such that

sup
x ̸=y∈[−π,π]

|f(x)− f(y)|
|x− y|α

≤ C.

Setting y = 0 we would obtain for any x ∈ (0, π] that

0 <
1

C
≤ xα

|f(x)|
= | log(x/2π)|xα,

which is in contradiction to the fact that limx↘0 | log(x)|xα = 0.

(b) Consider the measure space (N,P(N), µ), where

µ(A) =
∑
k∈N

k1A(k).

By definition ∫
N
|f |2 dµ =

∑
k∈N

k2|f(k)|2 = ∥f∥2V ,

that is, ∥ · ∥V is a norm associated to an L2 space. We conclude that V is a Hilbert space.
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(c) As in the previous point we have

∥f∥V = ∥f∥L1(N,P(N),µ),

where µ is as above. Now, the L1-norm is not induced by an inner product and hence V endowed
with the norm ∥ · ∥V has no Hilbert space structure. To show this, we check that the parallelogram
identity is not satisfied: consider f = (1, 1, 0, . . . ) and g = (1,−1, 0, . . . ), then

∥f + g∥2V + ∥f − g∥2V = (2 + 0)2 + (0 + 4)2 = 20

̸= 36 = 2 · (1 + 2)2 + 2 · (1 + 2)2 = 2∥f∥2V + 2∥g∥2V .

(d) Recall the definitions

C((−π, π);R) ={ real-valued continuous functions on (−π, π)},
C([−π, π];R) ={ real-valued continuous functions on [−π, π]},

Cper([−π, π];R) ={f ∈ C([−π, π];R) : f(−π) = f(π)},
C2
per([−π, π];R) ={f ∈ C([−π, π];R) : f is twice continuously differentiable

with f, f ′, f ′′ ∈ Cper([−π, π];R)}.

From the definitions the following inclusions follow immediatly

C2
per([−π, π];R) ⊂ Cper([−π, π];R) ⊂ C([−π, π];R) ⊂ C((−π, π);R).

We claim that all inclusions are strict. For every inclusion we construct a function that belongs to
the larger space but not to the smaller one. Let f, g, h : [−π, π] → R be given by

f(x) = (π − x)−1,

g(x) = x,

h(x) = |x|.

Then

f ∈ C((−π, π);R)\C([−π, π];R),
g ∈ C([−π, π];R)\Cper([−π, π];R),
h ∈ Cper([−π, π];R)\C2

per([−π, π];R).

Exercise 8.3.
Let u : [a, b] → C be continuous and piecewise C1 on a compact interval [a, b] ⊂ R with
u(a) = u(b) = 0.

(a) Show that ∫ b

a

|u(x)|2 dx ≤ (b− a)2

π2

∫ b

a

|u′(x)|2 dx (1)
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Remark: (1) is known as the Wirtinger inequality.

(b) For which functions does equality hold in (1)?

Solution:

(a) We may assume without loss of generality that a = 0. Otherwise consider the shifted function
u(x− a). Thus, let u be defined on [0, b]. We extend u to an odd function on [−b, b] by reflection
(i.e. ũ(−x) = −u(x)). Since u(0) = 0, the odd extension is still continuous and piecewise C1.
We then extend u further periodically to obtain a 2b-periodic function ũ on R. Once again, since
u(b) = 0, we have ũ continuous and piecewise C1. Note that ũ has a Fourier series

ũ(x) =
∑
n∈Z

cn(ũ)e
iωnx with cn(ũ) =

1

2b

∫ b

−b
ũ(x)e−iωnx dx,

where we set ω = 2π
2b = π

b . Since ũ is odd, we have

c0(ũ) =
1

2b

∫ b

−b
ũ(x) dx = 0.

The Fourier coefficients of the derivative ũ′(x) satisfy

cn(ũ) = inω · cn(ũ), ∀n ∈ Z,

see Proposition 2.17 and Remark 2.18 in the lecture notes. It follows from Parseval’s identity that∫ b

−b
|ũ′(x)|2 dx = 2b

∑
n∈Z\{0}

|inωcn(ũ)|2 = 2bω2
∑

n∈Z\{0}

n2|cn(ũ)|2

≥ 2bω2
∑

n∈Z\{0}

|cn(ũ)|2 = ω2

∫ b

−b
|ũ(x)|2 dx.

(2)

Since ũ was the odd extension of u, we have∫ b

−b
|ũ(x)|2 dx = 2

∫ b

0
|u(x)|2 dx,

∫ b

−b
|ũ′(x)|2 dx = 2

∫ b

0
|u′(x)|2 dx.

So (1) follows from (2) when we insert ω2 = π2

b2
= π2

(b−a)2
(recall a = 0).

(b) In (2) we used the inequality
∑

n∈Z |cn(ũ)|2 ≤
∑

n∈Z n
2|cn(ũ)|2 where c0(ũ) = 0. Equality holds

if and only if cn(ũ) = 0 for all n with n2 ̸= 1. Thus, ũ must have c1(ũ), c−1(ũ) as its only non-zero
Fourier coefficients. Moreover, since ũ is odd, we must have c−1(ũ) = −c1(ũ). Thus, we have
equality in (1) if and only if

ũ(x) = c1(ũ)(e
iωx − e−iωx) = 2ic1(ũ) sin(ωx),

i.e.
u(x) = C sin

( π

a− b
x
)

for some C ∈ C.
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Exercise 8.4.
Let f : R → C be 2π-periodic and integrable on [−π, π].

(a) Show that

cn(f) = − 1

2π

∫ π

−π

f
(
x+ π

n

)
e−inx dx,

and hence

cn(f) =
1

4π

∫ π

−π

(
f(x)− f

(
x+ π

n

))
e−inx dx.

(b) Now assume that f is Hölder continuous of order α, that is

|f(x+ h)− f(x)| ≤ C|h|α

for some 0 < α ≤ 1, some C > 0 and all x, h.
Show that cn(f) is of order |n|−α, i.e. for some C̃ > 0 and all n ∈ Z:

|cn(f)| ≤
C̃

|n|α
.

(c) Prove that the above result cannot be improved by showing that the function

f(x) =
∞∑
k=0

2−kαei2
kx,

where 0 < α < 1, is Hölder continuous of order α and satisfies cn(f) = n−α whenever n = 2k.
Hint: Break the sum up as follows f(x+ h)− f(x) =

∑
2k≤|h|−1 · · ·+

∑
2k>|h|−1 . . . and use

the fact that |1− eiθ| ≤ |θ| for any θ ∈ R.

Solution:

(a) We calculate

1

2π

∫ π

−π
f
(
x+ π

n

)
e−inx dx =

1

2π

∫ π−π
n

−π−π
n

f(y)e−inyeiπ dx = − 1

2π

∫ π

−π
f(y)e−iny dx = −cn(f),

where we made the change of variables y = x − π
n , used the periodicity of f and eiπ = −1. The

second equality follows by adding the two different expressions for cn(f).

(b) Using the previous subquestion and the Hölder condition, we find

|cn(f)| =
∣∣∣ 1
4π

∫ π

−π

(
f(x)− f

(
x+ π

n

))
e−inx dx

∣∣∣ ≤ 1

4π

∫ π

−π

∣∣f(x)− f
(
x+ π

n

)∣∣ dx ≤ 1

4π
2πC

∣∣∣π
n

∣∣∣α
and the inequality follows for C̃ = 1

2Cπα.
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(c) We first establish the Hölder condition for f . We estimate

|f(x+ h)− f(x)| ≤
∣∣∣ ∞∑
k=0

2−kαei2
k(x+h) −

∞∑
k=0

2−kαei2
kx
∣∣∣ ≤ ∞∑

k=0

2−kα
∣∣ei2kh − 1

∣∣
=

∑
2k≤|h|−1

2−kα
∣∣ei2kh − 1

∣∣+ ∑
2k>|h|−1

2−kα
∣∣ei2kh − 1

∣∣
≤

∑
2k≤|h|−1

2−kα 2k|h|+
∑

2k>|h|−1

2 · 2−kα,

where in first sum we estimated |ei2kh − 1| ≤ 2k|h|, and for the second sum we simply used

|ei2kh − 1| ≤ 2. The second sum can now be bounded by

∑
2k>|h|−1

2 · 2−kα ≤ 2|h|α
∞∑
k=0

2−kα ≤ 2

1− 2−α
|h|α.

For the first sum, let m ∈ N be the unique integer such that 2−m−1 < |h| ≤ 2−m (we assume
|h| ≤ 1, otherwise the sum is zero). Then

∑
2k≤|h|−1

2−kα 2k|h| =
m∑
k=0

(2k|h|)1−α|h|α ≤ |h|α
m∑
k=0

(2k−m)1−α ≤ 1

1− 2α−1
|h|α.

This establishes the Hölder continuity of f . Since the series defining f converges in L2 (in fact
uniformly), the Fourier coefficients can be read off from the definition. We have

cn(f) =

{
n−α when n = 2k for some k ∈ N0

0 otherwise
.

Exercise 8.5.
Recall that the Dirichlet kernel satisfies Dn(x) =

sin((n+1/2)x)
sin(x/2)

, for all n ≥ 1 and x ∈ R.

(a) Show that ∫ π

0

|Dn(x)| dx > 2
n−1∑
j=0

∫ (j+1)π

jπ

| sin(y)|dy
y
.

Hint: Use | sin(t)| ≤ |t|, then change variables and divide up the domain of integration.

(b) Show that for each j ≥ 0 we have∫ (j+1)π

jπ

| sin(y)|dy
y

≥ c

j + 1
,

for some (explicit) constant c > 0.
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(c) Conclude that ∥Dn∥L1(0,π) ≥ C log n as n → ∞ for some C > 0.
Hint: Recall the asymptotic behavior of the harmonic series: Hn :=

∑n
k=1

1
k
≥ log n.

Remark: This shows that Dn does not converge in L1 as n → ∞.

Solution:

(a) In order to show the estimate, we first make the simple observation that∫ π

0
|Dn(x)|dx =

∫ π

0

∣∣∣∣sin((n+ 1/2)x)

sin(x/2)

∣∣∣∣dx ≥
∫ π

0
2

∣∣∣∣sin((n+ 1/2)x)

x

∣∣∣∣dx,
since |sin(t)| ≤ |t| for any t ∈ R. Next we change variables setting y(x) =

(
n+ 1

2

)
· x to obtain∫ π

0
2

∣∣∣∣sin((n+ 1/2)x)

x

∣∣∣∣dx =

∫ π

0
2

(
n+

1

2

)
︸ ︷︷ ︸

=y′(x)

∣∣∣∣sin(y(x))y(x)

∣∣∣∣dx
= 2

∫ (n+1/2)π

0
|sin(y)|dy

y
> 2

∫ nπ

0
|sin(y)|dy

y
.

By dividing the domain of the latter integral into intervals of length π and plugging the result into
the first estimate above, we directly obtain∫ π

0
|Dn(x)|dx > 2 ·

n−1∑
j=0

∫ (j+1)π

jπ
|sin(y)|dy

y
.

(b) Next we estimate the integral over the subintervals. First note that for any j ∈ N we obtain,
changing variables z := y − jπ,∫ (j+1)π

jπ
|sin(y)|dy

y
=

∫ π

0
|sin(z + jπ)| dz

z + jπ
=

∫ π

0
|sin(z)| dz

z + jπ
,

where we used that |sin(z)| is π-periodic. We further note that∫ π

0
|sin(z)| dz

z + jπ
≥

∫ π

0
|sin(z)| dz

(1 + j)π
=

1

(1 + j)π

∫ π

0
|sin(z)|dz.

Now, setting

c :=
1

π

∫ π

0
|sin(y)|dy =

1

π
[− cos(y)]π0 =

2

π

we obtain ∫ (j+1)π

jπ
|sin(y)|dy

y
≥ c

j + 1
.

(c) Using part (1) and (2) we obtain

∥Dn∥L1(0,π) =

∫ π

0
|Dn(x)|dx > 2 ·

n−1∑
j=0

∫ (j+1)π

jπ
|sin(y)|dy

y

≥ 2 ·
n−1∑
j=0

c

j + 1
= 2c

n∑
j=1

1

j

= 2c ·Hn,
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where Hn are the partial sums of the harmonic series. Thus,

∥Dn∥L1(0,π) ≥ 2c log(n)

as n → ∞.
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