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Exercise 9.1. ♣
Which of the following statements are true? Recall that f̂ denotes the Fourier transform of
a function f .

(a) Let {fn}n∈N be a sequence of compactly supported continuous functions on Rd. If fn → f
uniformly, then f is continuous and compactly supported.

(b) Let {fn}n∈N be a sequence of compactly supported continuous functions on Rd. If fn → f
uniformly, then f is continuous and satisfies lim|x|→∞ f(x) = 0.

(c) If f ∈ L1(Rd), then f̂ ∈ L1(Rd).

(d) If f is compactly supported on Rd, then f̂ ∈ L1(Rd).

(e) If f is compactly supported and bounded on Rd, then f̂ is continuous and satisfies
lim|ξ|→∞ f̂(ξ) = 0.

(f) For f ∈ L1(Rd) define ft(x) := f(x)1{|f(x)|≥t} for t > 0. Then

sup
ξ∈Rd

|f̂t(ξ)| → 0 as t→ ∞.

Solution:

(a) False. f is necessarily continuous, see below, but does not necessarily have compact support in
Rd. We construct a counterexample. Define vn : [0,∞) → R by

vn(r) =


1, if r ≤ n,

n+ 1− r, if n ≤ r ≤ n+ 1,

0, if r ≥ n+ 1.

Let fn(x) = vn(|x|)e−|x|2 and f(x) = e−|x|2 . Then each fn has compact support in Rd and fn → f
in L∞ as n→ ∞, but f is not compactly supported.

(b) True. Recall that (C(Rd), ∥ · ∥L∞) is a Banach space, hence the limit f is certainly continuous.
We claim that f(x) → 0 as |x| → ∞. Indeed, for any ϵ > 0 we can find n ∈ N such that
∥fn − f∥L∞ < ϵ. Furthermore, there is R = Rn > 0 large enough such that supp(fn) ⊂ BR(0).
Now for all x ∈ Rd with |x| ≥ R we have

|f(x)| = |f(x)− fn(x)| ≤ ∥f − fn∥L∞ < ϵ.

Thus |f(x)| → 0 as |x| → ∞.

(c) False. Take for example f = χ[−1,1] ∈ L1(R), then

f̂(ξ) =

√
2

π

sin ξ

ξ
/∈ L1(R).

Indeed∫
R

∣∣∣∣sin ξξ
∣∣∣∣ dξ = 2

∞∑
k=0

∫ (k+1)π

kπ

| sin ξ|
|ξ|

dξ ≥ 2

∞∑
k=0

∫ (k+1)π

kπ

| sin ξ|
(k + 1)π

dξ =
4

π

∞∑
k=0

1

1 + k
= ∞.
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(d) False. The same counterexample as above still works.

(e) True. If f is compactly supported and bounded, then f ∈ L1(Rd) and the Fourier transform
maps L1 into C0(Rd).

(f) True. Indeed, by the dominated convergence theorem we have ft → 0 in L1(Rd). Note that we
can dominate ft by f itself and the pointwise limit is 0 since |{|f | = ∞}| = 0 (as f is L1). By
Theorem 3.3 we conclude

∥f̂t∥L∞(Rd) ≤ (2π)−d/2∥ft∥L1(Rd) → 0, as t→ ∞

Exercise 9.2.
For the following PDEs of evolution type, try to find the most general solution of the form
u(t, x) =

∑
k∈Z uk(t)e

−ikx without worrying about convergence issues (i.e. we are looking
for 2π-periodic solutions to the PDEs). For each PDE also write down a specific example
solution which is not a constant.
Remark: The functions {uk(t)}k∈Z will of course depend on the initial conditions, in par-
ticular the Fourier coefficients of u(0, ·) (and sometimes also of ∂tu(0, ·)).
(a) ∂tu = cos(t)∂xxu

(b) ∂ttu− ∂xxu = 0

(c) ∂tu = 1
1+t2

u+ ∂xxu

(d) ∂tu = ∂xxu+ 1

Solution:

(a) We write u as u(t, x) =
∑

k∈Z uk(t)e
ikx and notice that

∂tu =
∑
k∈Z

u′k(t)e
ikx, cos(t)∂xxu =

∑
k∈Z

−k2 cos(t)uk(t)eikx.

Hence we get an ordinary differential equation u′k(t) = −k2 cos(t)uk(t) for each k ∈ Z. Solving the

ODE, we find uk(t) = ce−k2 sin(t), where c = uk(0). So,

u(t, x) =
∑
k∈Z

uk(0)e
−k2 sin(t)+ikx.

Example: u(t, x) = e− sin(t)+ix.

(b) We write u(t, x) =
∑

k∈Z uk(t)e
ikx and find

∂ttu =
∑
k∈Z

u′′k(t)e
ikx, ∂xxu =

∑
k∈Z

−k2uk(t)eikx.
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So for each k ∈ Z we must have u′′k(t) = −k2uk(t). For k = 0 this gives u0(t) = u0(0)+u
′
0(0)t, while

for k ̸= 0 we find uk(t) = c1e
ikt+c2e

−ikt, where c1 =
1
2(uk(0)−

i
ku

′
k(0)) and c2 =

1
2(uk(0)+

i
ku

′
k(0)).

So we have

u(t, x) = u0(0) + u′0(0)t+
∑

k∈Z\{0}

(
1
2

(
uk(0)− i

ku
′
k(0)

)
eik(t−x) + 1

2

(
uk(0) +

i
ku

′
k(0)

)
e−ik(t+x)

)
.

Example: u(t, x) = cos(t− x).

(c) We write u as u(t, x) =
∑

k∈Z uk(t)e
ikx and notice that

∂tu =
∑
k∈Z

u′k(t)e
ikx, 1

1+t2
u =

∑
k∈Z

1
1+t2

uk(t)e
ikx, ∂xxu =

∑
k∈Z

−k2uk(t)eikx.

Hence we get the ordinary differential equations u′k(t) =
1

1+t2
uk(t) − k2uk(t) for each k ∈ Z. This

can be integrated to uk(t) = cearctan(t)−k2t, where c = uk(0). Hence,

u(t, x) =
∑
k∈Z

uk(0)e
arctan(t)−k2t+ikx.

Example: u(t, x) = earctan(t)−t+ix.

(d) As usual, we write u(t, x) =
∑

k∈Z uk(t)e
ikx and observe that u formally satisfies∑

k∈Z
u′k(t)e

ikx =
∑
k∈Z

(−k2)uk(t)eikx + 1.

Note that the constant term 1 should be treated with the k = 0 Fourier mode. For k = 0, we have
u′0 = 1 and thus u0(t) = u0(0) + t. For k ̸= 0, we have

uk(t) = uk(0)e
−k2t.

The general solution is

u(t, x) = u0(0) + t+
∑

k∈Z\{0}

uk(0)e
−k2t+ikx.

Example: u(t, x) = t.

Exercise 9.3.
Consider the following evolution problem with periodic boundary conditions:

i∂tu+ ∂xxu = 0 for all (t, x) ∈ R× R,
u(t, x) = u(t, x+ 2π) for all (t, x) ∈ R× R,
u(0, x) = f(x) for some given 2π-periodic f ∈ C∞(R).

Remark: This PDE is a version of the Schrödinger equation.
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(a) Explain why solutions cannot be purely real-valued, unless they are constant.

(b) Explain why, for each fixed large N ∈ N, we have supk∈Z |k|N |ck(f)| <∞.

(c) Find the most general formal solution u(t, x) =
∑

k∈Z uk(t)e
ikx, where the {uk(t)} depend

on the Fourier coefficients of f .

(d) Show that the formal solution is in fact a true solution and is C∞ in both variables.
Hint: You need to show that the Fourier coefficients {ck(∂mt ∂nxu(t, ·))} are summable. This
follows from the decay of the {ck(f)}.
(e) Show that we found the only possible solution: if v is a solution of the problem which is
C2

per in space and C1 in time, then u = v.
Hint: Argue exactly as in the proof of uniqueness for the heat equation.

(f) Find the explicit solution u in the case f(x) = 2 cos(3x).

(g) Does this equation enjoy the “smoothing effect” of the heat equation?
Hint: Observe that the size of uk and the size of ck(f) are comparable: do we expect
regularization?

Solution:

(a) Suppose we have a real-valued solution u which is not identically constant. Then all derivatives
of u also have to be real-valued. This implies that for all (t, x)

iR ∋ i∂tu(x, t) = −∂xxu(x, t) ∈ R =⇒ ∂tu = ∂xxu = 0.

So u needs to be constant in time and affine in space, i.e. u(t, x) = a+ bx. The periodic boundary
conditions force b = 0, so u is constant.

(b) Since f is 2π-periodic and smooth, we have f ∈ CN
per([−π, π]) for allN ∈ N. Thus, Theorem 2.22

(ii) in the lecture notes implies that
∑

k |k|α|ck(f)| <∞ for all α ≥ 0. In particular, |k|α|ck(f)| → 0
as k → ∞. Thus, for any fixed N ∈ N, we have supk |k|N |ck(f)| <∞.

(c) If we make the Ansatz u(t, x) =
∑

k uk(t)e
ikx and derive u formally, we get (similar to the case

of the heat equation):

i∂tu(t, x) =
∑
k∈Z

iu′k(t)e
ikx, ∂xxu(t, x) =

∑
k∈Z

−k2uk(t)eikx.

Imposing i∂tu + ∂xxu = 0 and u(0, x) = f(x), the coefficient functions uk(t) have to solve the
following ODE: {

u′k(t) = −ik2uk(t)
uk(0) = ck(f),

which is solved by uk(t) = ck(f)e
−ik2t. So we can write our general formal solution to the periodic

Schrödinger equation as follows:

u(t, x) =
∑
k∈Z

ck(f)e
−ik2teikx. (1)
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(d) We begin first by showing smoothness. Define

wk(t, x) = ck(f)e
−ik2teikx.

We show that for m,n ∈ N, the sums ∑
k∈Z

∂mt ∂
n
xwk(t, x)

converge absolutely and uniformly on R× R. Note that

|∂mt ∂nxwk(t, x)| = |(−ik2)m(ik)nck(f)e
−ik2teikx| = |k|2m+n|ck(f)|, ∀ t, x ∈ R.

We now set N = 2m+ n+ 2. Thanks to part (b), we know that supk |k|N |ck(f)| <∞, i.e. there is
some constant CN ≥ 0 such that |k|N |ck(f)| ≤ CN for all k ∈ Z.
It follows that∑

k∈Z
sup

(t,x)∈R×R
|∂mt ∂nxwk(t, x)| =

∑
k∈Z

|k|2m+n|ck(f)| ≤
∑
k∈Z

CN |k|−N |k|2m+n = CN

∑
k∈Z

|k|−2.

Thus, the sum indeed converges absolutely and uniformly and the formally defined function u is
actually well-defined. Moreover, the uniform convergence of the sum above implies that we can
interchange summation and derivatives, that is:

∂mt ∂
n
xu(t, x) = ∂mt ∂

n
x

∑
k∈Z

wk(t, x) =
∑
k∈Z

∂mt ∂
n
xwk(t, x)

and since this converges absolutely with respect to the uniform norm on R × R, the derivative
∂mt ∂

n
xu(t, x) exists and is continuous. Since m,n ∈ N were arbitrary, this implies that u ∈ C∞(R2).

It follows now directly from the remark above about interchanging derivatives and summation that
u actually solves the Schrödinger equation:

i∂tu(t, x) = i∂t
∑
k∈Z

ck(f)e
−ik2teikx =

∑
k∈Z

i∂tck(f)e
−ik2teikx

=
∑
k∈Z

k2ck(f)e
−ik2teikx = −

∑
k∈Z

∂xxck(f)e
−ik2teikx

= −∂xx
∑
k∈Z

ck(f)e
−ik2teikx = −∂xxu(t, x).

(e) Let v be as described another solution with the same initial data. Since v(t, ·) is in C2
per for

each t, we can write

v(t, x) =
∑
k∈Z

dk(t)e
ikx,

where dk(t) =
1
2π

∫ π
−π v(t, x)e

−ikx dx = ck(v(t, ·)).

As in the proof for the heat equation, we first show that dk(t) ∈ C1(R) for all k. For this, fix t ∈ R.
We want to show that lims→t dk(s) = dk(t). Since v is continuous, it is bounded on the (compact)
rectangle [t−1, t+1]× [−π, π] by some constant Kt. Thus, for s close enough to t, we can dominate
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v(s, x)e−ikx by the constant function Kt. Now, by dominated convergence and continuity of v we
get:

lim
s→t

dk(s) = lim
s→t

1

2π

∫ π

−π
v(s, x)e−ikx dx =

1

2π

∫ π

−π
lim
s→t

v(s, x)︸ ︷︷ ︸
=v(t,x)

e−ikx dx = dk(t).

Since by assumption also ∂tv is continuous, we can interchange integral and differentiation:

d′k(t) =
d

dt

1

2π

∫ π

−π
v(t, x)e−ikx dx =

1

2π

∫ π

−π
∂tv(t, x)e

−ikx dx.

Continuity of d′k(t) is now shown exactly as above, just with v replaced by ∂tv. Thus, dk ∈ C1(R).

Next, define Fk(t) = eik
2tdk(t). Fk is differentiable and

F ′
k(t) = ik2eik

2tdk(t) + eik
2td′k(t)

= ik2eik
2tdk(t) + eik

2tck(∂tv(t, ·))

= ik2eik
2tdk(t) + ieik

2tck(∂xxv(t, ·))

= ik2eik
2tdk(t)− ik2eik

2t ck(v(t, ·))︸ ︷︷ ︸
dk(t)

= 0,

for all t ∈ R. So Fk is a constant function with Fk(t) = dk(0) = ck(v(0, ·)) = ck(f). Hence for all
k ∈ Z and t ∈ R, we must have dk(t) = ck(f)e

−ik2t.

We can conclude that

v(t, x) =
∑
k

dk(t)e
ikx =

∑
k

ck(f)e
−ik2teikx = u(t, x),

where the equality holds in L2, so almost everywhere. But both u and v are assumed to be
continuous, so equality actually holds everywhere. This shows that (1) has to be the unique
solution for the Schrödinger equation.

(f) We can write f(x) as e3ix + e−3ix. Inserting this into (1), we get the solution

u(t, x) = e−9it
(
e3ix + e−3ix

)
= 2e−9it cos(3x).

(g) Recall that for the heat equation, the solution is smooth for positive times, even if the initial
data is not smooth (for instance if it is only C1

per). If v is a solution to the heat equation with

initial data f , then v(t, x) =
∑

k ck(f)e
−k2teikx. The factor e−k2t is what gives v its regularity, as it

dominates – for t > 0 – any polynomial in k. If we compare this to a solution u of the Schrödinger
equation with the same initial data, i.e. u(t, x) =

∑
k ck(f)e

−ik2teikx, we see that we need fast

decay of the ck(f) in order to have regularity, since the factor e−ik2t has modulus 1 for all k, hence
it does not contribute to convergence of the series. (Compare the calculations in part (d), where the
fast decay of the ck(f) was crucial, with the calculations you did in class in the Proof of Theorem
2.34 (iii) ).

So in general, the regularity of solutions to the Schrödinger equation at positive times depends on
the regularity of the initial data, contrary to the heat equation.
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Exercise 9.4.
Given f ∈ L2((−π, π)) as initial data, consider the associated periodic solution to the heat
equation defined by

u(t, x) :=
∑
k∈Z

ck(f)e
ikx−k2t, for all x ∈ R, t > 0.

(a) Show that u ∈ C∞((0,∞)× R) and u solves the heat equation

∂tu(t, x) = ∂xxu(t, x), for all x ∈ R, t > 0. (2)

Hint: Start from Parseval’s identity and argue as in the proof of Theorem 2.34.

(b) Show that u assumes the initial datum f in the following L2 sense:

lim
t↓0

∥u(t, ·)− f∥L2(−π,π) = 0. (3)

(c) Consider a function v(t, x) defined in (0,∞)×R which is 2π-periodic and of class C2 in
space, and of class C1 in time. Show that if v satisfies equations (2) and (3), then v = u.

Solution:

(a) As f is in L2((−π, π)), we make use of Parseval’s identity

2π
∑
k∈Z

|ck(f)|2 = ||f ||2L2 <∞,

which implies the simple ℓ∞ bound

sup
k∈Z

|ck(f)| ≤
1√
2π

∥f∥L2 .

We consider the candidate solution

u(t, x) :=
∑
k∈Z

ck(f) e
−k2t eikx.

We claim that the above series converges absolutely for each (t, x) with x ∈ R and t > 0, and
defines a function of class C∞((0,∞) × R) which solves the heat equation. To this end, we set
Ωδ := (δ,∞)×R for some arbitrary δ > 0 and, for each m,n ∈ N, we prove the uniform convergence
in Ωδ of the series of functions ∑

k∈Z
∂mt ∂nx (ck(f) e

−k2t eikx).

This will imply that our function u is indeed smooth on Ωδ. We note that

sup
(x,t)∈Ωδ

∣∣∣∂mt ∂nx (ck(f) e
−k2t eikx)

∣∣∣ = sup
(x,t)∈Ωδ

∣∣∣(−k2)m (ik)n ck(f) e
−k2t eikx

∣∣∣
≤ |k|2m+n |ck(f)| e−k2δ.
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The absolute convergence of the above series with respect to the uniform norm on Ωδ follows, since∑
k∈Z

sup
(x,t)∈Ωδ×R

∣∣∣∂mt ∂nx (ck(f) e
−k2t eikx)

∣∣∣ ≤ ∑
k∈Z

|k|2m+n |ck(f)| e−k2δ

≤ sup
k∈Z

|ck(f)|
∑
k∈Z

|k|2m+n e−k2δ ≤ ∥f∥L2 C(δ,m, n) <∞,

where C(δ,m, n) is a constant depending on m,n and δ. Hence, the potential solution u defines a
smooth function in Ωδ for each δ > 0. From the uniform convergence of the derivatives of all order,
we also deduce that we can interchange the order of differentiation and the infinite sum, which
guarantees that u is a genuine solution in Ωδ. Since δ > 0 was arbitrary, the claim follows.

(b) Again, we apply Parseval’s identity and find

lim
t→0

||u(t, ·)− f ||2L2 = lim
t→0

∑
k∈Z

∣∣∣ck(f) e−k2t − ck(f)
∣∣∣2 = lim

t→0

∑
k∈Z

|ck(f)|2 |e−k2t − 1|2︸ ︷︷ ︸
→0 for fixed k.

= 0.

The last equality is justified by using the Dominated Convergence Theorem (for the sequence of
functions ϕt(k) := |ck(f)|2|e−k2t − 1|2 ∈ ℓ1(Z) = L1(Z,P(Z),#)). In fact, the series on the RHS is
dominated uniformly in t by

|ck(f)|2|e−k2t − 1|2 ≤ 4|ck(f)|2 ∈ ℓ1(Z),

and converges pointwise to 0 as t→ 0.

(c) Let v be as in the question. We proceed as we did in the lecture notes, i.e, we show that u and
v must have identical Fourier coefficients.

Let v(t, x) =
∑

k∈Z dk(t) e
ikx be the Fourier series representation of v. The dominated convergence

theorem ensures that the Fourier coefficients

dk(t) =
1

2π

∫ π

−π
v(t, x) e−ikx dx

are C1 on (0,∞). Indeed, let t0 ∈ (0,∞) and fix some small δ > 0. We can dominate v(t, x) by
the constant ||v||L∞([t0−δ,t0+δ]×R) for all t ∈ [t0 − δ, t0 + δ] (here we use continuity of v), which is
trivially in L1((−π, π)). Thus, dominated convergence gives

lim
t→t0

dk(t) = lim
t→t0

1

2π

∫ π

−π
v(t, x) e−ikx dx

=
1

2π

∫ π

−π
lim
t→t0

v(t, x) e−ikx dx = dk(t0)

proving the continuity of dk for arbitrary k.

Again, using continuity of ∂tv, we can dominate ∂tv(t, x) for all t ∈ [t0 − δ, t0 + δ] by the constant
∥∂t v∥L∞([t0−δ,t0+δ]×R). Applying theorem A.33 (differentiation under the integral) we obtain

d

dt
dk(t)

∣∣∣
t=t0

=
d

dt

1

2π

∫ π

−π
v(t, x) e−ikx dx

∣∣∣
t=t0

=
1

2π

∫ π

−π
∂t v(t, x) e

−ikx dx
∣∣∣
t=t0

= ck(∂t v(t0, ·)),
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ensuring the differentiability of dk(t) on (0,∞). An analogous argument to the one we used above
shows that the dk are in fact continuously differentiable on the same interval.

Using the continuous differentiability of the dk, equation (2), and the behaviour of Fourier coeffi-
cients under differentiation, we derive

d

dt
ek

2tdk(t) = ek
2t
(
k2dk(t) + ck(∂tv(t, ·))

)
= ek

2t
(
k2dk(t) + ck(∂

2
xxv(t, ·))

)
= ek

2t

k2dk(t) + (ik)2 ck(v(t, ·))︸ ︷︷ ︸
=dk(t)

 = 0.

Thus, for all k ∈ Z we have dk(t) = λke
−k2t on (0,∞) for some λk ∈ C.

Now we know that both u, v satisfy equation (3), which implies

lim
t→0

||v(t, ·)− u(t, ·)||L2 = lim
t→0

||v(t, ·)− f + f − u(t, ·)||L2

≤ lim
t→0

(
||v(t, ·)− f ||L2 + ||u(t, ·)− f ||L2

)
= 0.

Thus, by Parseval’s theorem, we find

lim
t→0

∑
k∈Z

∣∣(λk − ck(f))e
−k2t

∣∣2 = 0.

In particular, this implies that for each fixed k we have

lim
t→0

|λk − ck(f)|2 e−2k2t = |λk − ck(f)|2 = 0,

so we must have λk = ck(f), for all k ∈ Z. This means that u and v have identical Fourier coefficients
and are thus equal almost everywhere. But u, v are both continuous on (0,∞) × R, so equality
almost everywhere implies equality everywhere, completing the proof.

Exercise 9.5.
Consider the following evolution problem with periodic boundary conditions:

∂ttu− ∂xxu+ λu = 0 for all (t, x) ∈ R× R, where λ ≥ 0 is a given constant,

u(t, x) = u(t, x+ 2π) for all (t, x) ∈ R× R,
u(0, x) = f(x) for some given 2π-periodic f ∈ C∞(R),
∂tu(0, x) = g(x) for some given 2π-periodic g ∈ C∞(R).

Remark: This PDE is known as the Klein-Gordon equation. For λ = 0 it is just the wave
equation.

(a) Write the most general formal solution u(t, x) =
∑

k∈Z uk(t)e
ikx, where the uk(t) depend

on λ and the Fourier coefficients of f and g.
Hint: Recall that λ is non-negative. You will get the equation for a harmonic oscillator.
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(b) Show that the formal solution is in fact a true solution and is C∞ in both variables.

(c) Show that if we just want our solution u to be in C2(R× R), the assumptions on f and
g can be relaxed to: ∑

k∈Z

(
|k|2|ck(f)|+ |k||ck(g)|

)
<∞.

(d) Assume that λ = 0, i.e. we are considering the wave equation. Show that for each pair
of 2π-periodic functions ϕ, ψ ∈ C2(R) the function (x, t) 7→ ϕ(x − t) + ψ(x + t) solves the
wave equation. Explain why this is compatible with what you found in the previous points.

Solution:

(a) If we assume that the solution has the proposed form, then we infer

0 = (∂2t − ∂2x + λ)
∑
k∈Z

uk(t)e
ikx =

∑
k∈Z

(u′′k(t) + (k2 + λ)uk(t))e
ikx.

As the vectors (eikx)k∈Z are linearly independent, we find that for any index k ∈ Z the following
homogeneous second order linear ODE must hold

u′′k(t) + (k2 + λ)uk(t) = 0 ⇒ uk(t) = ak cos(
√
k2 + λ · t) + bk sin(

√
k2 + λ · t)

for some ak, bk ∈ C. Matching these coefficients with the initial conditions, we find that our solution
must take the form

u(t, x) =
∑
k∈Z

uk(t)e
ikx,

uk(t) := ck(f) cos(
√
k2 + λ · t) + ck(g)√

k2 + λ
sin(

√
k2 + λ · t).

(b) We argue the exact same way as for the heat equation. Thus, we want to show that applying
any derivatives to the terms in the sum defining u results in a series that is absolutely convergent
with respect to the supremum norm in R × R, i.e. for any non-negative integers α, β ≥ 0 the
following series is bounded ∑

k∈Z

∥∥∥∂αt ∂βxuk(t)eikx∥∥∥∞ < +∞. (4)

Indeed, as f, g ∈ C∞
per we know from Theorem 2.22 in the lecture notes that for any N ∈ N we have∑

k∈Z
|k|N (|ck(f)|+ |ck(g)|) < +∞.

One can quickly see that this bound generalizes to∑
k∈Z

(
k2 + λ

)N
2 (|ck(f)|+ |ck(g)|) < +∞, ∀N ∈ N.

We are now in a position to prove the convergence in (4):∑
k∈Z

∥∥∥∂αt ∂βxuk(t)eikx∥∥∥∞ ≤
∑
k∈Z∗

|ck(f)| ·
(
k2 + λ

)α+β
2 + |ck(g)| ·

(
k2 + λ

)α+β−1
2 < +∞. (5)
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(c) Under the weaker assumption, we see that (5) still holds for α + β ≤ 2, thus ensuring C2

regularity.

(d) Using the chain rule, one quickly verifies that every C2 function of the form ϕ(x− t)+ψ(x+ t)
constitutes a solution to the wave equation.

To show this is compatible with the general solution above for λ = 0, we rewrite

cos(
√
k2t) = cos(|k|t) = cos(kx) = 1

2

(
eikt + e−ikt

)
1√
k2

sin(
√
k2t) = 1

|k| sin(|k|t) =
1
k sin(kx) =

1
2ik

(
eikt − e−ikt

)
The general solution can thus be written:

u(t, x) =
∑
k∈Z

(
ck(f) cos(kt) +

ck(g)

k
sin(kt)

)
eikx

=
∑
k∈Z

1

2

(
ck(f) +

ck(g)

ik

)
eik(x+t) +

∑
k∈Z

1

2

(
ck(f)−

ck(g)

ik

)
eik(x−t)

= ϕ(x+ t) + ψ(x− t),

where we defined

ϕ(y) :=
∑
k∈Z

1

2

(
ck(f) +

ck(g)

ik

)
exp(iky), ψ(y) :=

∑
k∈Z

1

2

(
ck(f)−

ck(g)

ik

)
exp(iky).

Note that the series are convergent in C2
per(R) under the decay assumptions on ck(f), ck(g).
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