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Exercise 11.1. &
Which of the following statements are true?

(a) If f € LY(RY) and f € L*(R?), then necessarily also f € L2(R%).
(b) If A € C is an eigenvalue! of F: L?(RY) — L*(R?), then necessarily \ € {+1,+i}.
(c) The function # — 7= is an element of the Schwartz class S(R).

(d) Let f € C*°(R) be a smooth function with all derivatives bounded on R, i.e. ) € L>(RR)
for all j € Ny. Then

feSMR), VieSR).

Hint: Recall the Leibniz formula for higher-order derivatives of products

o) =3 (Z) Feh g

k=0

Solution:

(a) True. As the (inverse) Fourier transform is an isometry in L? (Plancherel’s formula), we have
HfHL2(Rd) = Hf_lf”L2(Rd) = Hf”L2(Rd) < 0.

(b) True. Assume A € C is an eigenvalue of the Fourier transform and let f € L?(R%) be its
associated eigenvector, i.e. F(f) = Af. We know that the Fourier transform is an isometry on
L%, with inverse F~1. We also note that F(f)(z) = F~1(f)(—z) for all f € L2, x € R% Thus, one
has F2(f)(z) = f(—=x), for all z € R? and hence F*(f) = f for all f € L2. Thus, our eigenvalue \
must satisfy \* = 1, which implies A € {41, +i}.

(c) False. Let f(z) = 1/(1 +iz*). For f to belong to the Schwartz space S(R), one must have
x> 2" ™) € L®(R), for all n,m € Ny. However, if we choose m = 0 and n > 4, it is clear that

="
11 +izd] (14 28)

hence f does not belong to S(R).

(d) True. Take any differential and polynomial order n,m > 0 and estimate the supremum norm
on R:

20" (f) (@)l o =

<3 (3) famor sy ot

NI

‘ (+)

where we used that H@"‘kf(:v)Hoo < 0o by assumption on the function f and H:vmﬁkd)(x)uoo < o0
since v is a Schwartz function.

oo

ot oot <o

o0

IThat is to say: there exists some nonzero function v € L?(R?) such that Fv = \v.
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Exercise 11.2.
For A > 0, define

1= X" Yz| for |z| < A,
fl) = {0 otherwise.
(a) Show that
; 2 [2 sin®(3¢)
F&) =+ e

(b) Using the Poisson summation formula in the form?

Zf m(a+n) :Ze’wm”f(\/%n), VaeR,

nez nel

and an appropriate choice of A in the previous part, show that
2

}:( L ___ T vaeRr\Z

= (n+ a)?  sin®(ma)

Solution:

(a) We compute:
]E(g) = \/12?(/0)\(1 — %)eﬂfz dx + /0)\(1 + %)G*iﬁz dx)
A A
_ 1 (/ (1—%)e zﬁmdx+/0 (1_§)ei5xd$)
\/>/ ) cos(éz) dz = \/Z ((1 _ %) Sin(;l")
in?(1
= \/; )\52( —cos(X¢)) = \/z ; . 5222)\5),

where we applied partial integration and used cos(6) = COSQ(g) + Sinz(g) =1- QSiDQ(g).

iZ())\ + )\1£ /0)\ sin(éx) dx)

(b) We set A = v/2m. Then

_ =l
f(a:)z{l Var forlel <vam g 2

0 otherwise. ™ &2

Thus, for a ¢ Z we find

Zf T(a+n)) = 225111 7Toz+7m)_sin2(7ra)z 1

2 27
neZ Oé + n T nez (Oé + n)

since sin?(f + mn) = sin?(@) for all n € Z. On the other hand, we have

S eEmen p(v/3m) = £(0) = 1,

ne”L

2This follows from Exercise 10.4 on the last problem set.
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since f(v/2mn) =0 for all n € Z \ {0}. Thus, the Poisson summation formula gives

sin?(ma) Z : 1 _ 1

Exercise 11.3.
(a) Compute
R .
, rsin(r) e,
}%1_{20 n WG dl’, fOI'f GR\{—l,l}

Hint: Extend the integral to a contour integral in the complex plane and apply Cauchy’s
integral formula.

(b) Deduce that the function x — %ng) is not in L}(R).

Solution:

(a) We first use sin(z) = 4 (e — e7™) to write

R : R R
/ L sm(a;) e Ty = i T _emileD gy + i T mieHe gy
_p 142z 2i J_p 1+ 2?2 20 J_p 1+ 22

We thus turn our attention to the integral

R R
Ip = / 1‘ e g = / _r e T dg
_pl+a? _px+i)(x—1)

for « € R\ {0}. This can of course be viewed as a complex contour integral over the real interval
[-R, R] C C. Note that the integrand is a meromorphic function with simple poles at i and —i.
Denote by VE and 75 the following contours

7 ={2€C||2| = R, m(z) > 0}, 7 = {z € C||2| = R, Im() < 0},

where the half-circles are traversed counter-clockwise. Furthermore, denote by DE and Dp the
following closed contours, again traversed counter-clockwise,

DE = [-R, R] Uﬁ%, Dy =[-R,R]Uy.

Let a < 0. Then we have |e ™| = e~ lolm(2) 56 the integrand goes to zero on 'ﬁi as R — oco. We
write the integral above as

z z

Ip = fiazd o 7iozzd )
R /Dg(z—ki)(z—i)e ? [ﬁ‘g(z—ki)(z—i)e :

Notice that DE encircles the pole at z = ¢ when R > 1. Thus, Cauchy’s integral theorem implies
that

2z ; o0 .
/ ————— " dz =271 - —e® = mie®, when R > 1.
pj (z+i

)z —1) 2i
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On the other hand, we have

/,Z,e_io‘zdz—>0 as R — oo.
vt (24 i)(z—1)

Thus, for a < 0 we find
lim Ip = mie®.
R—o0

For a > 0 we argue similarly. The integrand now vanishes as R — oo for Im(z) < 0, so we write

z

z . .
Ir = _/ ————e “¥dz + / — e "%z,
o GG S )

where the change in sign is due to the orientation of the contour, and find by using Cauchy’s integral

formula:

lim Ir = —mie” ™.
R—

We can write this concisely as

lim Ig = imsgn(a)e” .
R—o0

Using this result to compute the original integral, we find

R

]%EI;O . mlsfg)e_iéx dr = g(sgn(f - 1)6"'5_1‘ + sgn(§ + l)e_|§+1|).

(b) Denote f(z) = xffg) and notice that f is certainly in L?(R). The Fourier transform of f can
be computed as

R—o0

(&) = 1i 1/Rf<>i@d
= l1m \/ﬁ x xT)e €,

where the limit converges in L?, see Remark 3.33 in the lecture notes. Thus, in the previous
subquestion we found the Fourier transform of f. Notice that f (&) has discontinuities at & = 1
and £ = —1, which cannot be removed by a change of f on a zero measure set. But if f were in
L?*(R) N L(R), then its Fourier transform would have a continuous representative. Thus, f cannot
be in L'(R).

Exercise 11.4.

(a) Let f € L*(R) have compact support, i.e. there exists some R > 0 such that
f =0 almost everywhere in R\ [-R, R].

Show that f is analytic on R. That is, for every £ € R the Taylor series of f around &
converges to f in a neighborhood of &,.

(b) Let f € L'(R) be a continuous function, which is not identically zero. Show that f and
its Fourier transform cannot both be compactly supported.
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Solution:

(a) Let f have support in [~ R, R]. Then the Fourier transform of f is

TS i
ﬂ@——VZR[wak dr.

We first give a short proof of analyticity using complex analysis. Note that the integrand above
extends to a holomorphic function in & € C for each fixed # € R. That is £ € C — f(x)e "¢
is holomorphic. Moreover, for all £ € C, we have |f(z)e ™| < |f(x)]e®™&) < ROl f(x)| for

€ [-R,R]. Thus, z — f(z)e™™¢ is L' for each £ € C. By a theorem from complex analysis, we
thus have

f(z)e"®¢ dz holomorphic in C,
\/ 27 /

so the restriction to £ € R gives a real-analytic function.

We now provide a more direct proof. To this end, we estimate the derivatives of f . By an application
of the dominated convergence theorem, see also Proposition 3.21 and Remark 3.23 in the lecture
notes, we have

f " fx)e” " da,

R
= — —ix
df" (©) Vor / R(
where the integral is absolutely convergent thanks to the compact support of f. In particular, we
have f € C°°(R) and we can estimate the n-th derivative by

< £l

d&nf( F/ ||| f (= ’dx<\/— / x)|dx TS R", V¢eR.

Thus, by Taylor’s theorem we have

N s
S, FOHFD () na1| o Ifllrwy  RNTHE — |V
HG HZ:% e = "y N E1) e~ ) < Jon N+l

which converges to zero as N — oo for each fixed £ € R. Note that in fact the Taylor series around
any & € R converges absolutely for all £ € R:

0| f(n)
Z‘if n(!&)) (£—8)"| <

(b) This follows immediately from the first part of this exercise. If f is compactly supported then
f is analytic on R and the only compactly supported analytic function on R is the zero function.

We also proviAde a more direct argument. By the first part of the exercise, the Taylor series of f
converges to f on all of R. Now choose &y outside of the support of f. Then f = 0 in a neighborhood
of &, so f (&) = 0 for all n € Ny. Thus, we find

= ™ (&)
>=Z% i

which implies f = 0, contrary to our assumption.

=0, VEER,
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Exercise 11.5.
Given ¢ € S(R), we consider the differential equation

u'(z) +u(x) = ¢(x), forall x € R.
(a) Show that, if there is a solution u € S(R), then it is the unique solution within the class

of Schwartz functions.

(b) Using the Fourier transform and inverse Fourier transform, show that there is indeed a
solution u € S(R) to the differential equation.

(c) Solve the differential equation again, this time with classical methods (multiply by e
etc..).

(d) Check that the two results you found are indeed the same.

Solution:
(a) Suppose that u,v € S(R) are both solutions to the differential equation. Then the difference
w:=u —v € S(R) solves the following differential equation:

wtw=u-v)+u-—0v)=u+u— 0 -v)=¢—¢=0.

This is a first order homogeneous linear differential equation with general solution w(x) = ce™™ for
any ¢ € C. Since w € S(R), we must in particular have that w is bounded on R, which can only be
the case if ¢ = 0. Thus, we have w = 0, forces u = v, i.e. the solution is unique within S(R).

(b) Since both sides of the equation are Schwartz functions, we may take the Fourier transform.
We compute

F(&) = Flu+u')(§) = Fu(§) +iFu() = (1+ 1) Fu(g),

where we used that F(u')(€) = iF(u)(€) for any Schwartz function u. Dividing by 1 + i€ (which
is never zero!) yields

1

Ful®) = 17 i€

Fo(§).

Since ¢ € S(R), we know that (Theorem 3.25) F¢ € S(R). Note that £ € R — (1 +i¢) tis a
smooth function with all derivatives bounded on R. Multiplication with such a function leaves the
Schwartz class invariant, see exercise 11.1(d). Thus, (1 +i€)"1F¢(¢) € S(R) and we can take the
inverse Fourier transform to get

o1 L 1 [ Fe)
u(zx) =F 1+i§]—"¢(m)—m Tt
5

u € S(R), since it is the inverse Fourier transform of a

e dg.

Note moreover that by Theorem 3.2
Schwartz function.

(c) Multiply the differential equation by e® to get

e"o(x) = u(z)e” +u'(z)e” = (u(x)e”).
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Since e*¢(x) — 0 as £ — —oo (¢ is bounded), we can integrate over the interval (—oo, x) to get

u(@)e” = / " et dt.

—00

Finally divide by e*, which yields the solution

u(x) = /w e T p(t) dt.

—00

(d) We have found two smooth solutions:

uy(z) = .7:_11_’_11_5.7:¢ and  ug(z) = /:;O e T P(t) dt.

We wish to show that u; = uy. Notice that if we introduce the L*(R) function

h(z) == e "1(g,00) (),

then uo can be written as a convolution, namely

ug(z) = /Rh(x —t)o(t)dt = (h* ¢)(x).

Thus, by the properties of the Fourier transform, we find (notice that both h and ¢ are in L'(R?))

1 .
Fup(§) = V2rFh(§)Fo(§) = m(ﬁ@) = Fu(§), forall £ €R.
Since the Fourier transform is injective on L'(R), we conclude that u; = ug. Here, we used that
h(§) = ﬁﬁ as can be seen by a direct calculation.
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