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Exercise 11.1. ♣
Which of the following statements are true?

(a) If f ∈ L1(Rd) and f̂ ∈ L2(Rd), then necessarily also f ∈ L2(Rd).

(b) If λ ∈ C is an eigenvalue1 of F : L2(Rd) → L2(Rd), then necessarily λ ∈ {±1,±i}.
(c) The function x→ 1

1+ix4 is an element of the Schwartz class S(R).

(d) Let f ∈ C∞(R) be a smooth function with all derivatives bounded on R, i.e. f (j) ∈ L∞(R)
for all j ∈ N0. Then

fψ ∈ S(R), ∀ψ ∈ S(R).

Hint: Recall the Leibniz formula for higher-order derivatives of products

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k).

Solution:

(a) True. As the (inverse) Fourier transform is an isometry in L2 (Plancherel’s formula), we have

∥f∥L2(Rd) = ∥F−1f̂∥L2(Rd) = ∥f̂∥L2(Rd) <∞.

(b) True. Assume λ ∈ C is an eigenvalue of the Fourier transform and let f ∈ L2(Rd) be its
associated eigenvector, i.e. F(f) = λf . We know that the Fourier transform is an isometry on
L2, with inverse F−1. We also note that F(f)(x) = F−1(f)(−x) for all f ∈ L2, x ∈ Rd. Thus, one
has F2(f)(x) = f(−x), for all x ∈ Rd and hence F4(f) = f for all f ∈ L2. Thus, our eigenvalue λ
must satisfy λ4 = 1, which implies λ ∈ {±1,±i}.

(c) False. Let f(x) = 1/(1 + ix4). For f to belong to the Schwartz space S(R), one must have
x 7→ xnf (m) ∈ L∞(R), for all n,m ∈ N0. However, if we choose m = 0 and n > 4, it is clear that

|xn|
|1 + ix4|

=
|x|n

(1 + x8)1/2
/∈ L∞(R),

hence f does not belong to S(R).

(d) True. Take any differential and polynomial order n,m ≥ 0 and estimate the supremum norm
on R:

∥xm∂n(fψ)(x)∥∞ =

∥∥∥∥∥xm
n∑

k=0

(
n

k

)
∂n−kf(x) ∂kψ(x)

∥∥∥∥∥
∞

≤
n∑

k=0

(
n

k

)∥∥∥xm∂n−kf(x) ∂kψ(x)
∥∥∥
∞

≤
n∑

k=0

(
n

k

)∥∥∥∂n−kf(x)
∥∥∥
∞

∥∥∥xm∂kψ(x)∥∥∥
∞
<∞,

where we used that
∥∥∂n−kf(x)

∥∥
∞ < ∞ by assumption on the function f and

∥∥xm∂kψ(x)∥∥∞ < ∞
since ψ is a Schwartz function.

1That is to say: there exists some nonzero function v ∈ L2(Rd) such that Fv = λv.
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Exercise 11.2.
For λ > 0, define

f(x) =

{
1− λ−1|x| for |x| < λ,

0 otherwise.

(a) Show that

f̂(ξ) =
2

λ

√
2

π
·
sin2(λ

2
ξ)

ξ2
.

(b) Using the Poisson summation formula in the form2∑
n∈Z

f̂
(√

2π(α + n)
)
=

∑
n∈Z

e−i2παnf
(√

2πn
)
, ∀α ∈ R,

and an appropriate choice of λ in the previous part, show that∑
n∈Z

1

(n+ α)2
=

π2

sin2(πα)
, ∀α ∈ R \ Z.

Solution:

(a) We compute:

f̂(ξ) =
1√
2π

(∫ λ

0

(
1− x

λ

)
e−iξx dx+

∫ 0

−λ

(
1 + x

λ

)
e−iξx dx

)
=

1√
2π

(∫ λ

0

(
1− x

λ

)
e−iξx dx+

∫ λ

0

(
1− x

λ

)
eiξx dx

)
=

√
2

π

∫ λ

0

(
1− x

λ

)
cos(ξx) dx =

√
2

π
·
((

1− x

λ

)sin(ξx)
ξ

∣∣∣x=λ

x=0
+

1

λξ

∫ λ

0
sin(ξx) dx

)
=

√
2

π
· 1

λξ2
(
1− cos(λξ)

)
=

√
2

π
· 2
λ
·
sin2(12λξ)

ξ2
,

where we applied partial integration and used cos(θ) = cos2( θ2) + sin2( θ2) = 1− 2 sin2( θ2).

(b) We set λ =
√
2π. Then

f(x) =

{
1− |x|√

2π
for |x| <

√
2π,

0 otherwise.
, f̂(ξ) =

2

π
·
sin2(

√
π
2 ξ)

ξ2
.

Thus, for α /∈ Z we find∑
n∈Z

f̂
(√

2π(α+ n)
)
=

1

π2

∑
n∈Z

sin2(πα+ πn)

(α+ n)2
=

sin2(πα)

π2

∑
n∈Z

1

(α+ n)2
,

since sin2(θ + πn) = sin2(θ) for all n ∈ Z. On the other hand, we have∑
n∈Z

e−i2παnf
(√

2πn
)
= f(0) = 1,

2This follows from Exercise 10.4 on the last problem set.
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since f(
√
2πn) = 0 for all n ∈ Z \ {0}. Thus, the Poisson summation formula gives

sin2(πα)

π2

∑
n∈Z

1

(α+ n)2
= 1.

Exercise 11.3.

(a) Compute

lim
R→∞

∫ R

−R

x sin(x)

1 + x2
e−iξx dx, for ξ ∈ R \ {−1, 1}.

Hint: Extend the integral to a contour integral in the complex plane and apply Cauchy’s
integral formula.

(b) Deduce that the function x→ x sin(x)
1+x2 is not in L1(R).

Solution:

(a) We first use sin(x) = 1
2i(e

ix − e−ix) to write∫ R

−R

x sin(x)

1 + x2
e−iξx dx =

1

2i

∫ R

−R

x

1 + x2
e−i(ξ−1)x dx+

1

2i

∫ R

−R

x

1 + x2
e−i(ξ+1)x dx.

We thus turn our attention to the integral

IR =

∫ R

−R

x

1 + x2
e−iαx dx =

∫ R

−R

x

(x+ i)(x− i)
e−iαx dx

for α ∈ R \ {0}. This can of course be viewed as a complex contour integral over the real interval
[−R,R] ⊂ C. Note that the integrand is a meromorphic function with simple poles at i and −i.
Denote by γ+R and γ−R the following contours

γ+R = {z ∈ C | |z| = R, Im(z) > 0}, γ−R = {z ∈ C | |z| = R, Im(z) < 0},

where the half-circles are traversed counter-clockwise. Furthermore, denote by D+
R and D−

R the
following closed contours, again traversed counter-clockwise,

D+
R = [−R,R] ∪ γ+R , D−

R = [−R,R] ∪ γ−R .

Let α < 0. Then we have |e−iαz| = e−|α|Im(z), so the integrand goes to zero on γ+R as R → ∞. We
write the integral above as

IR =

∫
D+

R

z

(z + i)(z − i)
e−iαz dz −

∫
γ+
R

z

(z + i)(z − i)
e−iαz dz.

Notice that D+
R encircles the pole at z = i when R > 1. Thus, Cauchy’s integral theorem implies

that ∫
D+

R

z

(z + i)(z − i)
e−iαz dz = 2πi · i

2i
eα = πieα, when R > 1.
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On the other hand, we have∫
γ+
R

z

(z + i)(z − i)
e−iαz dz → 0 as R→ ∞.

Thus, for α < 0 we find
lim

R→∞
IR = πieα.

For α > 0 we argue similarly. The integrand now vanishes as R→ ∞ for Im(z) < 0, so we write

IR = −
∫
D−

R

z

(z + i)(z − i)
e−iαz dz +

∫
γ−
R

z

(z + i)(z − i)
e−iαz dz,

where the change in sign is due to the orientation of the contour, and find by using Cauchy’s integral
formula:

lim
R→∞

IR = −πie−α.

We can write this concisely as
lim

R→∞
IR = iπsgn(α)e−|α|.

Using this result to compute the original integral, we find

lim
R→∞

∫ R

−R

x sin(x)

1 + x2
e−iξx dx =

π

2

(
sgn(ξ − 1)e−|ξ−1| + sgn(ξ + 1)e−|ξ+1|).

(b) Denote f(x) = x sin(x)
1+x2 and notice that f is certainly in L2(R). The Fourier transform of f can

be computed as

f̂(ξ) = lim
R→∞

1√
2π

∫ R

−R
f(x)e−iξx dx,

where the limit converges in L2, see Remark 3.33 in the lecture notes. Thus, in the previous
subquestion we found the Fourier transform of f . Notice that f̂(ξ) has discontinuities at ξ = 1
and ξ = −1, which cannot be removed by a change of f̂ on a zero measure set. But if f were in
L2(R)∩L1(R), then its Fourier transform would have a continuous representative. Thus, f cannot
be in L1(R).

Exercise 11.4.

(a) Let f ∈ L1(R) have compact support, i.e. there exists some R > 0 such that

f = 0 almost everywhere in R \ [−R,R].

Show that f̂ is analytic on R. That is, for every ξ0 ∈ R the Taylor series of f around ξ0
converges to f in a neighborhood of ξ0.

(b) Let f ∈ L1(R) be a continuous function, which is not identically zero. Show that f and
its Fourier transform cannot both be compactly supported.
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Solution:

(a) Let f have support in [−R,R]. Then the Fourier transform of f is

f̂(ξ) =
1√
2π

∫ R

−R
f(x)e−ixξ dx.

We first give a short proof of analyticity using complex analysis. Note that the integrand above
extends to a holomorphic function in ξ ∈ C for each fixed x ∈ R. That is ξ ∈ C → f(x)e−ixξ

is holomorphic. Moreover, for all ξ ∈ C, we have |f(x)e−ixξ| ≤ |f(x)|exIm(ξ) ≤ eR|Im(ξ)||f(x)| for
x ∈ [−R,R]. Thus, x → f(x)e−ixξ is L1 for each ξ ∈ C. By a theorem from complex analysis, we
thus have

ξ → 1√
2π

∫ R

−R
f(x)e−ixξ dx holomorphic in C,

so the restriction to ξ ∈ R gives a real-analytic function.

We now provide a more direct proof. To this end, we estimate the derivatives of f̂ . By an application
of the dominated convergence theorem, see also Proposition 3.21 and Remark 3.23 in the lecture
notes, we have

dn

dξn
f̂(ξ) =

1√
2π

∫ R

−R
(−ix)nf(x)e−ixξ dx,

where the integral is absolutely convergent thanks to the compact support of f . In particular, we
have f̂ ∈ C∞(R) and we can estimate the n-th derivative by∣∣∣ dn

dξn
f̂(ξ)

∣∣∣ ≤ 1√
2π

∫ R

−R
|x|n|f(x)| dx ≤ 1√

2π
Rn

∫ R

−R
|f(x)| dx ≤

∥f∥L1(R)√
2π

Rn, ∀ ξ ∈ R.

Thus, by Taylor’s theorem we have

∣∣∣f(ξ)− N∑
n=0

f̂ (n)(ξ0)

n!
(ξ − ξ0)

n
∣∣∣ = ∣∣∣ f̂ (N+1)(η)

(N + 1)!
(ξ − ξ0)

N+1
∣∣∣ ≤ ∥f∥L1(R)√

2π
· R

N+1|ξ − ξ0|N+1

(N + 1)!
,

which converges to zero as N → ∞ for each fixed ξ ∈ R. Note that in fact the Taylor series around
any ξ0 ∈ R converges absolutely for all ξ ∈ R:

∞∑
n=0

∣∣∣ f̂ (n)(ξ0)
n!

(ξ − ξ0)
n
∣∣∣ ≤ ∥f∥L1(R)√

2π

∞∑
n=0

1

n!
Rn|ξ − ξ0|n =

∥f∥L1(R)√
2π

eR|ξ−ξ0| <∞, ∀ ξ0, ξ ∈ R.

(b) This follows immediately from the first part of this exercise. If f is compactly supported then
f̂ is analytic on R and the only compactly supported analytic function on R is the zero function.

We also provide a more direct argument. By the first part of the exercise, the Taylor series of f̂
converges to f̂ on all of R. Now choose ξ0 outside of the support of f̂ . Then f̂ = 0 in a neighborhood
of ξ0, so f̂

(n)(ξ0) = 0 for all n ∈ N0. Thus, we find

f̂(ξ) =
∞∑
n=0

f̂ (n)(ξ0)

n!
(ξ − ξ0)

n = 0, ∀ ξ ∈ R,

which implies f ≡ 0, contrary to our assumption.
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Exercise 11.5.
Given ϕ ∈ S(R), we consider the differential equation

u′(x) + u(x) = ϕ(x), for all x ∈ R.

(a) Show that, if there is a solution u ∈ S(R), then it is the unique solution within the class
of Schwartz functions.

(b) Using the Fourier transform and inverse Fourier transform, show that there is indeed a
solution u ∈ S(R) to the differential equation.

(c) Solve the differential equation again, this time with classical methods (multiply by et

etc..).

(d) Check that the two results you found are indeed the same.

Solution:

(a) Suppose that u, v ∈ S(R) are both solutions to the differential equation. Then the difference
w := u− v ∈ S(R) solves the following differential equation:

w′ + w = (u− v)′ + (u− v) = u′ + u− (v′ − v) = ϕ− ϕ = 0.

This is a first order homogeneous linear differential equation with general solution w(x) = ce−x for
any c ∈ C. Since w ∈ S(R), we must in particular have that w is bounded on R, which can only be
the case if c = 0. Thus, we have w ≡ 0, forces u = v, i.e. the solution is unique within S(R).

(b) Since both sides of the equation are Schwartz functions, we may take the Fourier transform.
We compute

Fϕ(ξ) = F(u+ u′)(ξ) = Fu(ξ) + iξFu(ξ) = (1 + iξ)Fu(ξ),

where we used that F(u′)(ξ) = iξF(u)(ξ) for any Schwartz function u. Dividing by 1 + iξ (which
is never zero!) yields

Fu(ξ) = 1

1 + iξ
Fϕ(ξ).

Since ϕ ∈ S(R), we know that (Theorem 3.25) Fϕ ∈ S(R). Note that ξ ∈ R → (1 + iξ)−1 is a
smooth function with all derivatives bounded on R. Multiplication with such a function leaves the
Schwartz class invariant, see exercise 11.1(d). Thus, (1 + iξ)−1Fϕ(ξ) ∈ S(R) and we can take the
inverse Fourier transform to get

u(x) = F−1 1

1 + iξ
Fϕ(x) = 1√

2π

∫
R

Fϕ(ξ)
1 + iξ

eiξx dξ.

Note moreover that by Theorem 3.25 u ∈ S(R), since it is the inverse Fourier transform of a
Schwartz function.

(c) Multiply the differential equation by ex to get

exϕ(x) = u(x)ex + u′(x)ex = (u(x)ex)′.
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Since exϕ(x) → 0 as x→ −∞ (ϕ is bounded), we can integrate over the interval (−∞, x) to get

u(x)ex =

∫ x

−∞
etϕ(t) dt.

Finally divide by ex, which yields the solution

u(x) =

∫ x

−∞
et−xϕ(t) dt.

(d) We have found two smooth solutions:

u1(x) = F−1 1

1 + iξ
Fϕ and u2(x) =

∫ x

−∞
et−xϕ(t) dt.

We wish to show that u1 ≡ u2. Notice that if we introduce the L1(R) function

h(x) := e−x1(0,∞)(x),

then u2 can be written as a convolution, namely

u2(x) =

∫
R
h(x− t)ϕ(t) dt = (h ∗ ϕ)(x).

Thus, by the properties of the Fourier transform, we find (notice that both h and ϕ are in L1(Rd))

Fu2(ξ) =
√
2πFh(ξ)Fϕ(ξ) = 1

1 + iξ
ϕ̂(ξ) = Fu1(ξ), for all ξ ∈ R.

Since the Fourier transform is injective on L1(R), we conclude that u1 ≡ u2. Here, we used that
ĥ(ξ) = 1√

2π
1

1+iξ as can be seen by a direct calculation.
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