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Exercise 12.1. ♣
Which of the following statements are true?

(a) Define fn(ξ) = e−inξ sin(ξ)√
πξ

. Then {fn |n ∈ Z even} is an orthonormal system in L2(R).
Hint: Think in terms of the Fourier transform.

(b) Let f ∈ S(Rd) be a function whose Fourier transform is supported in the ball of radius
ϵ > 0, i.e. supp(f̂) ⊂ Bϵ. Then we must have∫

Rd

|x|2|f(x)|2 dx ≥ d2

4
ϵ−2∥f∥2L2(Rd).

(c) Let I ⊂ R be an open interval and h ∈ L∞(I) with h not identically zero. Then the
operator

T : L2(I) → L2(I), T f(x) = h(x)f(x)

is compact.

(d) Let V be a finite dimensional inner product space and H a Hilbert space. Then any
linear operator T : V → H is compact.

(e) Let (X, d) be a metric space and let x ∈ X. Assume (xn)n∈N is a sequence in X such
that any subsequence (xnk

)k∈N must possess a sub-subsequence (xnkj
)j∈N with xnkj

→ x as

j → ∞. Then xn → x as n → ∞.

Solution:

(a) True. Recall that ξ →
√

2
π · sin(ξ)ξ is the Fourier transform of 1[−1,1], the characteristic function

of the interval [−1, 1]. We have ∥1[−1,1]∥L2 =
√
2. So normalizing we find that f0(ξ) is the Fourier

transform of the norm one element 1√
2
1[−1,1] ∈ L2(Rd). Recall that the Fourier transform of a shifted

function x→ f(x−n) is just e−inξ f̂(ξ). Thus, fn is the Fourier transform of 1√
2
[n−1, n+1]. Since

{ 1√
2
[n − 1, n + 1] |n ∈ Z even} obviously forms an orthonormal system and the Fourier transform

is an isometry, the set in question also forms an orthonormal system.

(b) True. We use the Heisenberg inequality. Since |ξ| < ϵ on the support of f̂ , we have∫
Rd

|ξ|2|f̂(ξ)|2 dξ ≤ ϵ2
∫
Rd

|f̂(ξ)|2 dξ = ϵ2∥f∥2L2(Rd).

Thus, by the Heisenberg inequality, we have

d

2
∥f∥2L2 ≤ ∥xf∥L2∥ξf̂∥L2 ≤ ϵ∥f∥L2∥xf∥L2 .

Dividing by the ∥f∥L2 and squaring, we find

∥xf∥2L2 =

∫
Rd

|x|2|f(x)|2 dx ≥ d2

4
ϵ−2∥f∥2L2 .

(c) False. Take for instance h(x) = 1. Then T is the identity operator on L2(I), which is not
compact, since L2(I) is an infinite dimensional Hilbert space.
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(d) True. Since V is finite dimensional, the range of any operator T : V → H is finite dimensional,
and any finite rank operator is compact.

(e) True. Assume by contradiction that there is a δ > 0 such that d(xn, x) > δ for infinitely many
n ∈ N. Then we can extract a subsequence (xnk

)k∈N that cannot have any sub-sequences converging
to x, since xnk

is always at least a distance δ from x. We have found a contradiction, so xn must
converge to x.

Exercise 12.2.
Consider the Heisenberg inequality on R:

∥xf(x)∥L2(R) · ∥ξf̂(ξ)∥L2(R) ≥
1

2
∥f∥2L2(R), ∀ f ∈ S(R).

Show that equality holds if and only if f(x) = Ce−λx2
for some C ∈ R and λ > 0.

Hint: When does equality hold for the Cauchy-Schwarz inequality?

Solution: In the proof of the Heisenberg inequality, we used the Cauchy-Schwarz inequality to
deduce ∣∣∣〈xf, d

dx
f

〉
L2(R)

∣∣∣ ≤ ∥∥∥xf∥∥∥
L2(R)

∥∥∥ d

dx
f
∥∥∥
L2(R)

.

For equality to hold in the Heisenberg inequality, we need equality to hold in this application of
Cauchy-Schwarz, which is only the case if xf and d

dxf are linearly dependent. Thus, we need

d

dx
f(x) = axf(x)

for some a ∈ C. The general solution to this ODE is f(x) = Ce
a
2
x2

for some C ∈ R. If we denote
λ = −a

2 ∈ C, then f(x) = Ce−λx2
. Notice that we must take Re(λ) > 0 for f to be a Schwartz

function.

We now check if this function actually gives equality in the Heisenberg inequality. Using f ′(x) =
−2λxf(x), we compute

∥xf(x)∥L2(R)∥ξf̂(ξ)∥L2(R) = ∥xf(x)∥L2(R)∥f ′(x)∥L2(R) = 2|λ|∥xf(x)∥2L2(R) = 2|λ|
∫
R
xf(x)xf(x) dx

= 2|λ||C|2
∫
R
x2e−λx2

e−λx2
dx = 2|λ||C|2

∫
R
x2e−2Re(λ)x2

dx

= − |λ||C|2

2Re(λ)

∫
R
x
d

dx
e−2Re(λ)x2

dx =
|λ|

2Re(λ)
|C|2

∫
R
e−2Re(λ)x2

dx

=
|λ|

2Re(λ)
∥f∥2L2(R)

where we used partial integration together with the fact that the boundary terms vanish. Thus,
we have ∥xf(x)∥L2(R)∥ξf̂(ξ)∥L2(R) =

1
2∥f∥

2
L2(R) precisely when λ ∈ (0,∞).
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Exercise 12.3.
Let H be a Hilbert space. Denote the set of compact operators from H to H by K(H) and
the set of bounded operators by B(H).

(a) Show that K(H) is a linear subspace of B(H).

(b) Show that K(H) is a two-sided ideal in B(H) with respect to composition, that is for
any T ∈ K(H) and S ∈ B(H), we have ST ∈ K(H) and TS ∈ K(H).

Solution:

(a) Let T1, T2 ∈ K(H) and λ ∈ C. We show that T1 + λT2 ∈ K(H). One could use the continuity
of + : H × H → H and · : C × H → H and the fact that continuous functions map compact
subsets to compact subsets, to show that (T1 + λT2)(B1) is compact. Instead we use the converging
subsequences definition of compactness. Let (xn)n∈N be a bounded sequence in H. Since T1 is
compact, there is a subsequence (xnk

)k∈N such that T1xnk
converges to some y1 ∈ H. Now the

sequence (xnk
)k∈N is still a bounded sequence so by compactness of T2 there is a subsequence

(xnkj
)j∈N with T2xnkj

→ y2 for some y2 ∈ H. We have then found a subsequence of the original

sequence with (T1+λT2)xnkj
= T1xnkj

+λT2xnkj
→ y1+λy2. Thus, T1+λT2 is a compact operator.

(b) Let T ∈ K(H) and S ∈ B(H) We first consider the operator TS. Note that S(B1) ⊂ H is
a bounded set, since S is bounded. Thus, by the compactness of T , we have T (S(B1)) compact,
showing that TS is a compact operator.

Consider now the operator TS. Since S is bounded, it is continuous, and thus maps compact sets
to compact sets. By compactness of T , we have T (B1) compact and hence S(T (B1)) compact.
This shows that S(T (B1)) ⊂ S(T (B1)) is a subset of a compact set, and thus its closure S(T (B1))
is compact.

Exercise 12.4.
Let (X, ∥ · ∥) be an infinite dimensional normed vector space.

(a) Let Y ⊂ X be a proper closed linear subspace, i.e. Y ̸= X. Show that there exists x ∈ X
satisfying ∥x∥ = 1 and ∥x− y∥ ≥ 1

2
for all y ∈ Y .

Hint: Argue that we can find x0 ∈ X with α := infy∈Y ∥x0 − y∥ > 0 and y0 ∈ Y with
α ≤ ∥x0 − y0∥ ≤ 2α. Then consider x = ∥x0 − y0∥−1(x0 − y0).

(b) Show that the closed unit ball B1 ⊂ X is not compact.
Hint: Use the first part of this exercise to construct a sequence (xn)n∈N contained in B1 and
satisfying ∥xn − xm∥ ≥ 1

2
for all m ̸= n.

Solution:

(a) Choose any x0 ∈ X \ Y . Then we must have α := infy∈Y ∥x0 − y∥ > 0. Otherwise, there would
be a sequence in Y converging to x0, so x0 would lie in the closure of Y , and hence in Y , since Y
is closed. By definition of infimum, there is some y0 ∈ Y satisfying ∥x0 − y0∥ ≤ infy∈Y ∥x0 − y∥.
Thus, α ≤ ∥x0 − y0∥ ≤ 2α. Now set

x =
1

∥x0 − y0∥
(x0 − y0).
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Then ∥x∥ = 1 and for any y ∈ Y , we have

∥x− y∥ =
∥∥∥x0 − y0∥−1(x0 − y0)− y

∥∥ =
1

∥x0 − y0∥
∥∥x0 − y0 − ∥x0 − y0∥y

∥∥ =
1

∥x0 − y0∥
∥x0 − ỹ∥,

where we defined ỹ = y0 + ∥x0 − y0∥y. Since Y is a linear subspace, we have ỹ ∈ Y , and hence
∥x0 − ỹ∥ ≥ infy∈Y ∥x0 − y∥ = α. On the other hand, ∥x0 − y0∥ ≤ 2α by construction, so

∥x− y∥ =
1

∥x0 − y0∥
∥x0 − ỹ∥ ≥ α

2α
=

1

2
.

(b) We will construct a sequence (xn)n∈N in X satisfying ∥xn∥ = 1 for all n ∈ N and ∥xn−xm∥ ≥ 1
2

for all n ̸= m. Such a sequence cannot contain a converging subsequence (since any converging
subsequence would be a Cauchy sequence). We have then found a sequence contained in B1 with
no converging subsequences, so B1 cannot be compact.

We construct the sequence inductively. Assume we have found {x1, . . . , xN} satisfying ∥xn∥ = 1
and ∥xn − xm∥ ≥ 1

2 for all 1 ≤ n,m ≤ N with n ̸= m. Consider the N dimensional subspace
Y = Span{x1, . . . , xN} ⊂ X. Then Y is closed since it is finite dimensional. Thus, by the first
part of the exercise we can find some xN+1 ∈ X satisfying ∥xN+1∥ = 1 and ∥xN+1 − y∥ ≥ 1

2 for all
y ∈ Y . In particular, ∥xN+1 − xn∥ ≥ 1

2 for all 1 ≤ n ≤ N . By induction we obtain a sequence with
the desired properties.

Exercise 12.5.
Let f ∈ L2(Rd) be a function whose Fourier transform decays at infinity as a negative power,
i.e. for some α,M > 0 we have

|f̂(ξ)| ≤ M |ξ|−α for all |ξ| ≥ 1.

The goal of this problem is to show that in fact f ∈ Ck(Rd) for all non-negative integers
k < α− d. (More precisely, f has a representative in Ck(Rd).)

(a) For each R > 1, consider the function

fR(x) := (2π)−d/2

∫
BR

f̂(ξ)eiξx dξ,

compute f̂R and show that fR → f in L2(Rd) as R → ∞.

(b) Show that fR ∈ C∞(Rd) for any R, but in general fR /∈ S(Rd).

(c) Assume now that α > d. Using the decay assumption on f̂ , show that (fR)R>0 is a Cauchy
sequence in L∞(Rd). Conclude that f ∈ C(Rd) (up to re-definition on a zero measure set).

(d) Applying the same argument to ∂xj
fR, show inductively that f ∈ Ck(Rd) whenever

α > d+ k.
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Solution:

(a) Note that fR is just the inverse Fourier transform of 1BR
f̂ ∈ L2(Rd). Using the fact that the

Fourier transform is an isometry of L2, we find

f̂R = F(F−1(f̂ 1BR
)) = f̂ 1BR

.

We now compute

∥f − fR∥2L2 =
wwwf̂ − f̂R

www2

L2
=

∫
Rd

∣∣∣f̂(ξ)∣∣∣2 |1− 1BR
(ξ)|2 dξ −→ 0,

as R→ ∞. Here we used dominated convergence with∣∣∣f̂(ξ)∣∣∣2 |1− 1BR
(ξ)|2 ≤

∣∣∣f̂(ξ)∣∣∣2 ∈ L1(Rd).

(b) Note that by the computation above supp(f̂R) ⊂ BR so f̂R ∈ L1 ∩ L2. Let ψ ∈ C∞
c (Rd) with

ψ ≡ 1 on BR.

Then
fR = F−1

(
f̂R

)
= F−1

(
f̂R · ψ

)
= (2π)d/2fR ∗ F−1(ψ).

We have F−1(ψ) ∈ S(Rd), since ψ ∈ S(Rd), and by the properties of convolution we get that
fR ∈ C∞(Rd) (the convolution of a smooth L1 function with an L1 function is smooth). Alterna-
tively, one could argue iteratively using dominated convergence and the fact that derivatives of the
integral defining fR converge when integrated over BR.

If we had fR ∈ S(Rd), then also f̂R ∈ S(Rd). But f̂R might not even be continuous. Take for
example f(x) = (2π)−d/2 exp(−|x|2/2) with f̂ = f and

f̂R = f̂ 1BR
/∈ C0(Rd).

(c) Assume that α > d. We take any 1 < R1 ≤ R2 <∞ and estimate

∥fR2 − fR1∥L∞ = (2π)−d/2 sup
x∈Rd

∣∣∣∫
BR2

f̂(ξ)eiξx dξ −
∫
BR1

f̂(ξ)eiξx dξ
∣∣∣

= (2π)−d/2 sup
x∈Rd

∣∣∣∫
BR2

\BR1

f̂(ξ)eiξx dξ
∣∣∣

≤ (2π)−d/2

∫
BR2

\BR1

|f̂(ξ)| dξ

≤ (2π)−d/2M

∫
{|ξ|≥R1}

|ξ|−α dξ −→ 0,

as R1 → ∞. Here we used dominated convergence with

|ξ|−α 1Rd\BR1
(ξ) ≤ |ξ|−α 1Rd\B1

(ξ) ∈ L1(Rd), since α > d.

This shows that (fR)R>1 is a Cauchy sequence in L∞ and since L∞ is complete, we have that
fR converges uniformly as R → ∞. Since fR ∈ C(Rd) for each R, the uniform limit must be
continuous. On the other hand, we know that fR → f in L2(Rd) and hence (up to a subsequence)
a.e. on Rd, so (up to redefinition on a zero measure set) f must coincide with the uniform limit of
fR and thus be continuous.
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(d) Assume that α > d + k. Recall the multiindex notation and let β ∈ Nn
0 with |β| ≤ k. We

have already seen that f is continuous and fR is smooth for each R > 1. Using either a version
of Proposition 3.15 for the inverse Fourier transform, or just dominated convergence together with
integrability of ξβ f̂(ξ)1BR

, we obtain

∂βfR = ∂βF−1(f̂1BR
) = F−1

(
(iξ)β f̂1BR

)
= (2π)−d/2

∫
BR

(iξ)β f̂(ξ)eiξx dξ,

where we used the facts that f̂1BR
∈ L1(Rd) and ξβ f̂1BR

∈ L1(Rd). Now take 1 < R1 ≤ R2 < ∞
and estimate as in the previous subquestion:

∥∂βfR2 − ∂βfR1∥L∞ ≤ (2π)−d/2 sup
x∈Rd

∣∣∣∫
BR2

\BR1

(iξ)β f̂(ξ)eiξx dξ
∣∣∣

≤ (2π)−d/2

∫
BR2

\BR1

|f̂(ξ)| |ξ|k dξ

≤ (2π)−d/2M

∫
{|ξ|≥R1}

|ξ|−(α−k) dξ −→ 0,

as R1 → ∞, where we used dominated convergence with

|ξ|−(α−k) 1Rd\BR1
(ξ) ≤ |ξ|−(α−k) 1Rd\B1

(ξ) ∈ L1(Rd), since α− k > d.

This shows that (∂βfR)R>1 forms a Cauchy sequence in L∞ and hence, by the completeness of L∞,
that ∂βfR converges uniformly on Rd as R→ ∞ for each |β| ≤ k. Recall from Analysis I that since
both fR and its derivatives converge uniformly on Rd, we have f ∈ Ck(Rd) and ∂βfR converges to
∂βf for each |β| ≤ k.
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