Exercise 12.1.

Which of the following statements are true?

(a) Define $f_n(\xi) = e^{-in\xi} \frac{\sin(\xi)}{\sqrt{\pi\xi}}$. Then $\{f_n \mid n \in \mathbb{Z} \text{ even}\}$ is an orthonormal system in $L^2(\mathbb{R})$. **Hint:** Think in terms of the Fourier transform.

(b) Let $f \in S(\mathbb{R}^d)$ be a function whose Fourier transform is supported in the ball of radius $\epsilon > 0$, i.e. $\operatorname{supp}(\hat{f}) \subset B_{\epsilon}$. Then we must have

$$\int_{\mathbb{R}^d} |x|^2 |f(x)|^2 \, dx \ge \frac{d^2}{4} \epsilon^{-2} \|f\|_{L^2(\mathbb{R}^d)}^2$$

(c) Let $I \subset \mathbb{R}$ be an open interval and $h \in L^{\infty}(I)$ with h not identically zero. Then the operator

$$T: L^2(I) \to L^2(I), \quad Tf(x) = h(x)f(x)$$

is compact.

(d) Let V be a finite dimensional inner product space and H a Hilbert space. Then any linear operator $T: V \to H$ is compact.

(e) Let (X, d) be a metric space and let $x \in X$. Assume $(x_n)_{n \in \mathbb{N}}$ is a sequence in X such that any subsequence $(x_{n_k})_{k \in \mathbb{N}}$ must possess a sub-subsequence $(x_{n_{k_j}})_{j \in \mathbb{N}}$ with $x_{n_{k_j}} \to x$ as $j \to \infty$. Then $x_n \to x$ as $n \to \infty$.

Solution:

(a) True. Recall that $\xi \to \sqrt{\frac{2}{\pi}} \cdot \frac{\sin(\xi)}{\xi}$ is the Fourier transform of $\mathbf{1}_{[-1,1]}$, the characteristic function of the interval [-1,1]. We have $\|\mathbf{1}_{[-1,1]}\|_{L^2} = \sqrt{2}$. So normalizing we find that $f_0(\xi)$ is the Fourier transform of the norm one element $\frac{1}{\sqrt{2}}\mathbf{1}_{[-1,1]} \in L^2(\mathbb{R}^d)$. Recall that the Fourier transform of a shifted function $x \to f(x-n)$ is just $e^{-in\xi}\hat{f}(\xi)$. Thus, f_n is the Fourier transform of $\frac{1}{\sqrt{2}}[n-1,n+1]$. Since $\{\frac{1}{\sqrt{2}}[n-1,n+1] \mid n \in \mathbb{Z} \text{ even}\}$ obviously forms an orthonormal system and the Fourier transform is an isometry, the set in question also forms an orthonormal system.

(b) True. We use the Heisenberg inequality. Since $|\xi| < \epsilon$ on the support of \hat{f} , we have

$$\int_{\mathbb{R}^d} |\xi|^2 |\hat{f}(\xi)|^2 \, d\xi \le \epsilon^2 \int_{\mathbb{R}^d} |\hat{f}(\xi)|^2 \, d\xi = \epsilon^2 ||f||_{L^2(\mathbb{R}^d)}^2.$$

Thus, by the Heisenberg inequality, we have

$$\frac{d}{2} \|f\|_{L^2}^2 \le \|xf\|_{L^2} \|\xi\hat{f}\|_{L^2} \le \epsilon \|f\|_{L^2} \|xf\|_{L^2}.$$

Dividing by the $||f||_{L^2}$ and squaring, we find

$$\|xf\|_{L^2}^2 = \int_{\mathbb{R}^d} |x|^2 |f(x)|^2 \, dx \ge \frac{d^2}{4} \epsilon^{-2} \|f\|_{L^2}^2.$$

(c) False. Take for instance h(x) = 1. Then T is the identity operator on $L^2(I)$, which is not compact, since $L^2(I)$ is an infinite dimensional Hilbert space.

(d) True. Since V is finite dimensional, the range of any operator $T: V \to H$ is finite dimensional, and any finite rank operator is compact.

(e) True. Assume by contradiction that there is a $\delta > 0$ such that $d(x_n, x) > \delta$ for infinitely many $n \in \mathbb{N}$. Then we can extract a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ that cannot have any sub-sequences converging to x, since x_{n_k} is always at least a distance δ from x. We have found a contradiction, so x_n must converge to x.

Exercise 12.2.

Consider the Heisenberg inequality on \mathbb{R} :

$$||xf(x)||_{L^{2}(\mathbb{R})} \cdot ||\xi\hat{f}(\xi)||_{L^{2}(\mathbb{R})} \ge \frac{1}{2} ||f||^{2}_{L^{2}(\mathbb{R})}, \quad \forall f \in \mathcal{S}(\mathbb{R}).$$

Show that equality holds if and only if $f(x) = Ce^{-\lambda x^2}$ for some $C \in \mathbb{R}$ and $\lambda > 0$. **Hint:** When does equality hold for the Cauchy-Schwarz inequality?

Solution: In the proof of the Heisenberg inequality, we used the Cauchy-Schwarz inequality to deduce

$$\left|\left\langle xf, \frac{d}{dx}f\right\rangle_{L^{2}(\mathbb{R})}\right| \leq \left\|xf\right\|_{L^{2}(\mathbb{R})}\left\|\frac{d}{dx}f\right\|_{L^{2}(\mathbb{R})}.$$

For equality to hold in the Heisenberg inequality, we need equality to hold in this application of Cauchy-Schwarz, which is only the case if xf and $\frac{d}{dx}f$ are linearly dependent. Thus, we need

$$\frac{d}{dx}f(x) = axf(x)$$

for some $a \in \mathbb{C}$. The general solution to this ODE is $f(x) = Ce^{\frac{a}{2}x^2}$ for some $C \in \mathbb{R}$. If we denote $\lambda = -\frac{a}{2} \in \mathbb{C}$, then $f(x) = Ce^{-\lambda x^2}$. Notice that we must take $\operatorname{Re}(\lambda) > 0$ for f to be a Schwartz function.

We now check if this function actually gives equality in the Heisenberg inequality. Using $f'(x) = -2\lambda x f(x)$, we compute

$$\begin{split} \|xf(x)\|_{L^{2}(\mathbb{R})} \|\xi\hat{f}(\xi)\|_{L^{2}(\mathbb{R})} &= \|xf(x)\|_{L^{2}(\mathbb{R})} \|f'(x)\|_{L^{2}(\mathbb{R})} = 2|\lambda| \|xf(x)\|_{L^{2}(\mathbb{R})}^{2} = 2|\lambda| \int_{\mathbb{R}} xf(x)\overline{xf(x)} \, dx \\ &= 2|\lambda| |C|^{2} \int_{\mathbb{R}} x^{2} e^{-\lambda x^{2}} e^{-\overline{\lambda}x^{2}} \, dx = 2|\lambda| |C|^{2} \int_{\mathbb{R}} x^{2} e^{-2\operatorname{Re}(\lambda)x^{2}} \, dx \\ &= -\frac{|\lambda| |C|^{2}}{2\operatorname{Re}(\lambda)} \int_{\mathbb{R}} x \frac{d}{dx} e^{-2\operatorname{Re}(\lambda)x^{2}} \, dx = \frac{|\lambda|}{2\operatorname{Re}(\lambda)} |C|^{2} \int_{\mathbb{R}} e^{-2\operatorname{Re}(\lambda)x^{2}} \, dx \\ &= \frac{|\lambda|}{2\operatorname{Re}(\lambda)} \|f\|_{L^{2}(\mathbb{R})}^{2} \end{split}$$

where we used partial integration together with the fact that the boundary terms vanish. Thus, we have $||xf(x)||_{L^2(\mathbb{R})} ||\xi \hat{f}(\xi)||_{L^2(\mathbb{R})} = \frac{1}{2} ||f||_{L^2(\mathbb{R})}^2$ precisely when $\lambda \in (0, \infty)$.

Exercise 12.3.

Let H be a Hilbert space. Denote the set of compact operators from H to H by $\mathcal{K}(H)$ and the set of bounded operators by $\mathcal{B}(H)$.

(a) Show that $\mathcal{K}(H)$ is a linear subspace of $\mathcal{B}(H)$.

(b) Show that $\mathcal{K}(H)$ is a two-sided ideal in $\mathcal{B}(H)$ with respect to composition, that is for any $T \in \mathcal{K}(H)$ and $S \in \mathcal{B}(H)$, we have $ST \in \mathcal{K}(H)$ and $TS \in \mathcal{K}(H)$.

Solution:

(a) Let $T_1, T_2 \in \mathcal{K}(H)$ and $\lambda \in \mathbb{C}$. We show that $T_1 + \lambda T_2 \in \mathcal{K}(H)$. One could use the continuity of $+ : H \times H \to H$ and $\cdot : \mathbb{C} \times H \to H$ and the fact that continuous functions map compact subsets to compact subsets, to show that $(T_1 + \lambda T_2)(B_1)$ is compact. Instead we use the converging subsequences definition of compactness. Let $(x_n)_{n \in \mathbb{N}}$ be a bounded sequence in H. Since T_1 is compact, there is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $T_1 x_{n_k}$ converges to some $y_1 \in H$. Now the sequence $(x_{n_k})_{k \in \mathbb{N}}$ is still a bounded sequence so by compactness of T_2 there is a subsequence $(x_{n_{k_j}})_{j \in \mathbb{N}}$ with $T_2 x_{n_{k_j}} \to y_2$ for some $y_2 \in H$. We have then found a subsequence of the original sequence with $(T_1 + \lambda T_2) x_{n_{k_j}} = T_1 x_{n_{k_j}} + \lambda T_2 x_{n_{k_j}} \to y_1 + \lambda y_2$. Thus, $T_1 + \lambda T_2$ is a compact operator.

(b) Let $T \in \mathcal{K}(H)$ and $S \in \mathcal{B}(H)$ We first consider the operator TS. Note that $S(B_1) \subset H$ is a bounded set, since S is bounded. Thus, by the compactness of T, we have $\overline{T(S(B_1))}$ compact, showing that TS is a compact operator.

Consider now the operator TS. Since S is bounded, it is continuous, and thus maps compact sets to compact sets. By compactness of T, we have $\overline{T(B_1)}$ compact and hence $S(\overline{T(B_1)})$ compact. This shows that $S(T(B_1)) \subset S(\overline{T(B_1)})$ is a subset of a compact set, and thus its closure $\overline{S(T(B_1))}$ is compact.

Exercise 12.4.

Let $(X, \|\cdot\|)$ be an infinite dimensional normed vector space.

(a) Let $Y \subset X$ be a proper closed linear subspace, i.e. $Y \neq X$. Show that there exists $x \in X$ satisfying ||x|| = 1 and $||x - y|| \ge \frac{1}{2}$ for all $y \in Y$.

Hint: Argue that we can find $x_0 \in X$ with $\alpha := \inf_{y \in Y} ||x_0 - y|| > 0$ and $y_0 \in Y$ with $\alpha \le ||x_0 - y_0|| \le 2\alpha$. Then consider $x = ||x_0 - y_0||^{-1}(x_0 - y_0)$.

(b) Show that the closed unit ball $\overline{B_1} \subset X$ is not compact.

Hint: Use the first part of this exercise to construct a sequence $(x_n)_{n \in \mathbb{N}}$ contained in $\overline{B_1}$ and satisfying $||x_n - x_m|| \ge \frac{1}{2}$ for all $m \ne n$.

Solution:

(a) Choose any $x_0 \in X \setminus Y$. Then we must have $\alpha := \inf_{y \in Y} ||x_0 - y|| > 0$. Otherwise, there would be a sequence in Y converging to x_0 , so x_0 would lie in the closure of Y, and hence in Y, since Y is closed. By definition of infimum, there is some $y_0 \in Y$ satisfying $||x_0 - y_0|| \le \inf_{y \in Y} ||x_0 - y||$. Thus, $\alpha \le ||x_0 - y_0|| \le 2\alpha$. Now set

$$x = \frac{1}{\|x_0 - y_0\|} (x_0 - y_0).$$

Then ||x|| = 1 and for any $y \in Y$, we have

$$\|x - y\| = \left\| \|x_0 - y_0\|^{-1} (x_0 - y_0) - y \right\| = \frac{1}{\|x_0 - y_0\|} \|x_0 - y_0 - \|x_0 - y_0\|y\| = \frac{1}{\|x_0 - y_0\|} \|x_0 - \tilde{y}\|,$$

where we defined $\tilde{y} = y_0 + ||x_0 - y_0||y$. Since Y is a linear subspace, we have $\tilde{y} \in Y$, and hence $||x_0 - \tilde{y}|| \ge \inf_{y \in Y} ||x_0 - y|| = \alpha$. On the other hand, $||x_0 - y_0|| \le 2\alpha$ by construction, so

$$||x - y|| = \frac{1}{||x_0 - y_0||} ||x_0 - \tilde{y}|| \ge \frac{\alpha}{2\alpha} = \frac{1}{2}.$$

(b) We will construct a sequence $(x_n)_{n \in \mathbb{N}}$ in X satisfying $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $||x_n - x_m|| \ge \frac{1}{2}$ for all $n \neq m$. Such a sequence cannot contain a converging subsequence (since any converging subsequence would be a Cauchy sequence). We have then found a sequence contained in $\overline{B_1}$ with no converging subsequences, so $\overline{B_1}$ cannot be compact.

We construct the sequence inductively. Assume we have found $\{x_1, \ldots, x_N\}$ satisfying $||x_n|| = 1$ and $||x_n - x_m|| \ge \frac{1}{2}$ for all $1 \le n, m \le N$ with $n \ne m$. Consider the N dimensional subspace $Y = \text{Span}\{x_1, \ldots, x_N\} \subset X$. Then Y is closed since it is finite dimensional. Thus, by the first part of the exercise we can find some $x_{N+1} \in X$ satisfying $||x_{N+1}|| = 1$ and $||x_{N+1} - y|| \ge \frac{1}{2}$ for all $y \in Y$. In particular, $||x_{N+1} - x_n|| \ge \frac{1}{2}$ for all $1 \le n \le N$. By induction we obtain a sequence with the desired properties.

Exercise 12.5.

Let $f \in L^2(\mathbb{R}^d)$ be a function whose Fourier transform decays at infinity as a negative power, i.e. for some $\alpha, M > 0$ we have

$$|\hat{f}(\xi)| \le M |\xi|^{-\alpha}$$
 for all $|\xi| \ge 1$.

The goal of this problem is to show that in fact $f \in C^k(\mathbb{R}^d)$ for all non-negative integers $k < \alpha - d$. (More precisely, f has a representative in $C^k(\mathbb{R}^d)$.)

(a) For each R > 1, consider the function

$$f_R(x) := (2\pi)^{-d/2} \int_{B_R} \hat{f}(\xi) e^{i\xi x} d\xi,$$

compute \hat{f}_R and show that $f_R \to f$ in $L^2(\mathbb{R}^d)$ as $R \to \infty$.

(b) Show that $f_R \in C^{\infty}(\mathbb{R}^d)$ for any R, but in general $f_R \notin \mathcal{S}(\mathbb{R}^d)$.

(c) Assume now that $\alpha > d$. Using the decay assumption on \hat{f} , show that $(f_R)_{R>0}$ is a Cauchy sequence in $L^{\infty}(\mathbb{R}^d)$. Conclude that $f \in C(\mathbb{R}^d)$ (up to re-definition on a zero measure set).

(d) Applying the same argument to $\partial_{x_j} f_R$, show inductively that $f \in C^k(\mathbb{R}^d)$ whenever $\alpha > d + k$.

Solution:

(a) Note that f_R is just the inverse Fourier transform of $\mathbf{1}_{B_R} \hat{f} \in L^2(\mathbb{R}^d)$. Using the fact that the Fourier transform is an isometry of L^2 , we find

$$\hat{f}_R = \mathcal{F}(\mathcal{F}^{-1}(\hat{f} \mathbf{1}_{B_R})) = \hat{f} \mathbf{1}_{B_R}.$$

We now compute

$$\|f - f_R\|_{L^2}^2 = \left\|\hat{f} - \hat{f}_R\right\|_{L^2}^2 = \int_{\mathbb{R}^d} \left|\hat{f}(\xi)\right|^2 |1 - \mathbf{1}_{B_R}(\xi)|^2 \, d\xi \longrightarrow 0,$$

as $R \to \infty$. Here we used dominated convergence with

$$\left|\hat{f}(\xi)\right|^{2} |1 - \mathbf{1}_{B_{R}}(\xi)|^{2} \leq \left|\hat{f}(\xi)\right|^{2} \in L^{1}(\mathbb{R}^{d}).$$

(b) Note that by the computation above $\operatorname{supp}(\hat{f}_R) \subset B_R$ so $\hat{f}_R \in L^1 \cap L^2$. Let $\psi \in C_c^{\infty}(\mathbb{R}^d)$ with

$$\psi \equiv 1 \text{ on } B_R$$

Then

$$f_R = \mathcal{F}^{-1}\left(\hat{f}_R\right) = \mathcal{F}^{-1}\left(\hat{f}_R \cdot \psi\right) = (2\pi)^{d/2} f_R * \mathcal{F}^{-1}(\psi)$$

We have $\mathcal{F}^{-1}(\psi) \in \mathcal{S}(\mathbb{R}^d)$, since $\psi \in \mathcal{S}(\mathbb{R}^d)$, and by the properties of convolution we get that $f_R \in C^{\infty}(\mathbb{R}^d)$ (the convolution of a smooth L^1 function with an L^1 function is smooth). Alternatively, one could argue iteratively using dominated convergence and the fact that derivatives of the integral defining f_R converge when integrated over B_R .

If we had $f_R \in \mathcal{S}(\mathbb{R}^d)$, then also $\hat{f}_R \in \mathcal{S}(\mathbb{R}^d)$. But \hat{f}_R might not even be continuous. Take for example $f(x) = (2\pi)^{-d/2} \exp(-|x|^2/2)$ with $\hat{f} = f$ and

$$\hat{f}_R = \hat{f} \ \mathbf{1}_{B_R} \notin C^0(\mathbb{R}^d).$$

(c) Assume that $\alpha > d$. We take any $1 < R_1 \leq R_2 < \infty$ and estimate

$$\begin{split} \|f_{R_2} - f_{R_1}\|_{L^{\infty}} &= (2\pi)^{-d/2} \sup_{x \in \mathbb{R}^d} \left| \int_{B_{R_2}} \hat{f}(\xi) e^{i\xi x} \, d\xi - \int_{B_{R_1}} \hat{f}(\xi) e^{i\xi x} \, d\xi \right| \\ &= (2\pi)^{-d/2} \sup_{x \in \mathbb{R}^d} \left| \int_{B_{R_2} \setminus B_{R_1}} \hat{f}(\xi) e^{i\xi x} \, d\xi \right| \\ &\leq (2\pi)^{-d/2} \int_{B_{R_2} \setminus B_{R_1}} |\hat{f}(\xi)| \, d\xi \\ &\leq (2\pi)^{-d/2} M \int_{\{|\xi| \ge R_1\}} |\xi|^{-\alpha} \, d\xi \longrightarrow 0, \end{split}$$

as $R_1 \to \infty$. Here we used dominated convergence with

$$|\xi|^{-\alpha} \mathbf{1}_{\mathbb{R}^d \setminus B_{R_1}}(\xi) \le |\xi|^{-\alpha} \mathbf{1}_{\mathbb{R}^d \setminus B_1}(\xi) \in L^1(\mathbb{R}^d), \text{ since } \alpha > d.$$

This shows that $(f_R)_{R>1}$ is a Cauchy sequence in L^{∞} and since L^{∞} is complete, we have that f_R converges uniformly as $R \to \infty$. Since $f_R \in C(\mathbb{R}^d)$ for each R, the uniform limit must be continuous. On the other hand, we know that $f_R \to f$ in $L^2(\mathbb{R}^d)$ and hence (up to a subsequence) a.e. on \mathbb{R}^d , so (up to redefinition on a zero measure set) f must coincide with the uniform limit of f_R and thus be continuous.

(d) Assume that $\alpha > d + k$. Recall the multiindex notation and let $\beta \in \mathbb{N}_0^n$ with $|\beta| \leq k$. We have already seen that f is continuous and f_R is smooth for each R > 1. Using either a version of Proposition 3.15 for the inverse Fourier transform, or just dominated convergence together with integrability of $\xi^{\beta} \hat{f}(\xi) \mathbf{1}_{B_R}$, we obtain

$$\partial^{\beta} f_{R} = \partial^{\beta} \mathcal{F}^{-1}(\hat{f} \mathbf{1}_{B_{R}}) = \mathcal{F}^{-1}\left((i\xi)^{\beta} \hat{f} \mathbf{1}_{B_{R}}\right) = (2\pi)^{-d/2} \int_{B_{R}} (i\xi)^{\beta} \hat{f}(\xi) e^{i\xi x} d\xi,$$

where we used the facts that $\hat{f}\mathbf{1}_{B_R} \in L^1(\mathbb{R}^d)$ and $\xi^{\beta}\hat{f}\mathbf{1}_{B_R} \in L^1(\mathbb{R}^d)$. Now take $1 < R_1 \leq R_2 < \infty$ and estimate as in the previous subquestion:

$$\begin{aligned} \|\partial^{\beta} f_{R_{2}} - \partial^{\beta} f_{R_{1}}\|_{L^{\infty}} &\leq (2\pi)^{-d/2} \sup_{x \in \mathbb{R}^{d}} \left| \int_{B_{R_{2}} \setminus B_{R_{1}}} (i\xi)^{\beta} \hat{f}(\xi) e^{i\xi x} \, d\xi \right| \\ &\leq (2\pi)^{-d/2} \int_{B_{R_{2}} \setminus B_{R_{1}}} |\hat{f}(\xi)| \, |\xi|^{k} \, d\xi \\ &\leq (2\pi)^{-d/2} M \int_{\{|\xi| \geq R_{1}\}} |\xi|^{-(\alpha-k)} \, d\xi \longrightarrow 0, \end{aligned}$$

as $R_1 \to \infty$, where we used dominated convergence with

$$|\xi|^{-(\alpha-k)} \mathbf{1}_{\mathbb{R}^d \setminus B_{R_1}}(\xi) \le |\xi|^{-(\alpha-k)} \mathbf{1}_{\mathbb{R}^d \setminus B_1}(\xi) \in L^1(\mathbb{R}^d), \text{ since } \alpha-k > d$$

This shows that $(\partial^{\beta} f_R)_{R>1}$ forms a Cauchy sequence in L^{∞} and hence, by the completeness of L^{∞} , that $\partial^{\beta} f_R$ converges uniformly on \mathbb{R}^d as $R \to \infty$ for each $|\beta| \leq k$. Recall from Analysis I that since both f_R and its derivatives converge uniformly on \mathbb{R}^d , we have $f \in C^k(\mathbb{R}^d)$ and $\partial^{\beta} f_R$ converges to $\partial^{\beta} f$ for each $|\beta| \leq k$.