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ETH Zürich
HS 2024

Exercise 13.1. ♣
Which of the following statements are true?

(a) If T : H → H is a compact operator on a Hilbert space, then 0 ∈ EV(T ).

(b) If T : H → H is a compact operator on a Hilbert space, then 0 ∈ σ(T ).

(c) Let (αn)n∈N be a sequence of complex numbers. Then the operator

T : ℓ2(N) → ℓ2(N), T
(
(xn)n∈N

)
= (αnxn)n∈N

is compact.

(d) Let (αn)n∈N be a sequence of complex numbers. Then the spectrum of the operator

T : ℓ2(N) → ℓ2(N), T
(
(xn)n∈N

)
= (αnxn)n∈N

satisfies σ(T ) = {αn}n∈N ∪ {0}.
(e) Let H be a Hilbert space and let v1, . . . vn, w1, . . . , wn ∈ H. Then T (x) =

∑n
k=1 ⟨x, vk⟩wk

defines a bounded linear operator T : H → H.

Solution:

(a) False. See Exercise 13.2 for a counterexample in infinite dimensions.

(b) The way the question is stated this is false. A counterexample is the identity operator on a finite
dimensional Hilbert space. If H is infinite dimensional, then the statement is true, see Theorem
4.38 in the lecture notes.

(c) False. Take for instance αn = 1 for all n ∈ N. One can show that T is compact if and only if
αn → 0 as n → ∞.

(d) False. The set of eigenvalues is given by {αn}n∈N, but any accumulation point of this set is also
in the spectrum since σ(T ) must be closed. So take for instance αn = 1 − 1

n . Then 1 ∈ σ(T ) but
1 ̸= αn for all n.

(e) True. Linearity is obvious and boundedness follows from the Cauchy-Schwarz inequality:

∥T (x)∥ ≤
n∑

k=1

| ⟨x, vk⟩ |∥wk∥ ≤ ∥x∥
n∑

k=1

∥vk∥∥wk∥.

Exercise 13.2.
Consider the map T : ℓ2(N) → ℓ2(N) defined by

T ((xk)k∈N) =
(xk

k

)
k∈N

.

(a) Show that T is a continuous linear operator and determine its norm.
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(b) Show that T is the limit (with respect to the operator norm) of a sequence of finite rank
operators. Is T compact?

(c) Determine the set of eigenvalues and the spectrum of T .

Solution:

(a) Linearity is immediate. We readily estimate

∥T (x)∥2ℓ2 =
∞∑
k=1

x2k
k2

≤
∞∑
k=1

x2k = ∥x∥2ℓ2 .

This shows that T is a bounded, i.e. continuous, operator with operator norm ∥T∥ ≤ 1. Defining
e1 = (1, 0, . . . ), we have T (e1) = e1. Thus, in fact ∥T∥ = 1.

(b) For every m ≥ 1, define Tm : ℓ2(N) → ℓ2(N) as

Tm((xk)k∈N) =
(
x1,

x2
2
, . . . ,

xm
m

, 0, 0, . . .
)
.

It is clear that the range of Tm is contained in an m-dimensional subspace of ℓ2(N), i.e. Tm is a
finite rank operator. We estimate

∥T − Tm∥ = sup
∥x∥ℓ2=1

∥T (x)− Tm(x)∥ℓ2

= sup
∥x∥ℓ2=1

√√√√ ∑
k≥m+1

x2k
k2

≤ 1

(m+ 1)
sup

∥x∥ℓ2=1

√ ∑
k≥m+1

x2k

≤ 1

m+ 1
.

Thus, ∥T − Tm∥ → 0 as m → ∞, i.e. Tm → T as operators. Since the finite rank operators Tm

are compact and the class of compact operators is closed in the topology of the operator norm, T
is compact.

(c) An eigenvalue of T is an element x ∈ ℓ2(N), x ̸= 0 such that

T (x) = λx

for some constant λ ∈ C. Passing to the coefficients, the eigenvalue equation reads

xk
k

= λxk, ∀ k ∈ N. (1)

Since x ̸= 0, there is k ∈ N with xk ̸= 0, which implies λ = 1/k. But then (1) forces xj = 0 for
every j ̸= k. In particular, the eigenvectors of T are the elements ek of the standard basis and the
corresponding eigenvalues are 1/k. Lastly, using compactness of T , Theorem 4.38 implies that the
spectrum is

σ(T ) = {0} ∪ {1/k}k≥1.
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ETH Zürich
HS 2024

Exercise 13.3.
Let {rn}n∈N be an enumeration of Q+ = {q ∈ Q, q > 0}, i.e. n ∈ N → rn ∈ Q+ is a bijection.
Let H be a Hilbert space and {en}n∈N a Hilbert basis in H. Define the linear operator

T : H → H, T (x) =
∞∑
n=1

(1
2

)rn
⟨x, en⟩ en.

(a) Show that T is a bounded operator and compute ∥T∥.
(b) Determine the set of eigenvalues EV(T ) and the spectrum σ(T ) of T .

(c) Is T a compact operator?

Solution:

(a) Note that (12)
q < 1 for all q ∈ Q+. Thus, for any x ∈ H, we have

∥T (x)∥2 =
∑
n∈N

(1
2

)2rn
| ⟨x, en⟩ |2 ≤

∑
n∈N

| ⟨x, en⟩ |2 = ∥x∥2,

where we used that {en}n∈N is an orthonormal basis. On the other hand, for any ϵ > 0 we can choose
q ∈ Q+ small enough so that 1− (12)

q < ϵ. Let n ∈ N be such that rn = q. Then we have ∥en∥ = 1
and ∥T (en)∥ = (12)

rn > 1− ϵ. Since ϵ was arbitrary, this shows that ∥T∥ = sup∥x∥=1 ∥T (x)∥ = 1.

(b) For each n ∈ N, we have T (en) = (12)
rnen, as follows from the orthonormality of the basis.

Thus, (12)
rn is an eigenvalue for all n, i.e. {(12)

q | q ∈ Q+} ⊂ EV(T ). On the other hand, if λ is an
eigenvalue of T with eigenvector x, then Tx = λx. Taking the inner product with en, we find

⟨Tx, en⟩ = (12)
rn ⟨x, en⟩ = λ ⟨x, en⟩ .

Thus, for each n ∈ N either λ = (12)
rn or ⟨x, en⟩ = 0, which implies that (12)

rn are precisely the
eigenvalues of T with associated eigenvector en. So we have

EV(T ) =
{
(12)

q | q ∈ Q+
}
.

To find the spectrum, note that EV(T ) ⊂ σ(T ). Now notice that EV(T ) is dense in [0, 1] (since
Q+ is dense in R+). The spectrum σ(T ) is a closed subset of C, see Proposition 4.36 in the lecture
notes, so we must have [0, 1] ⊂ σ(T ). On the other hand, if λ /∈ [0, 1] then there exists δ > 0 so
that |λ− (12)

rn | ≥ δ for all n ∈ N. Using x =
∑

n∈N ⟨x, en⟩ en, we find

(T − λ · Id)x =
∑
n∈N

(
(12)

rn − λ
)
⟨x, en⟩ en.

Define the operator

S : H → H, S(x) =
∑
n∈N

(
(12)

rn − λ
)−1 ⟨x, en⟩ en.

Since |(12)
rn −λ|−1 ≤ δ−1 for all n, this indeed defines a bounded operator on H and S(T −λ · Id) =

(T − λ · Id)S = Id. Thus, T − λ · Id is invertible, i.e. λ /∈ σ(T ). This shows that

σ(T ) = [0, 1].

Remark: The values λ ∈ σ(T ) \ EV(T ) lie in spectrum, because the operator (T − λ · Id) is not
surjective. It is injective, otherwise λ would be an eigenvalue. In this case, one can actually show
that the range Im(T − λ · Id) ̸= H is dense in H.
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(c) T is not compact. This follows for instance from Theorem 4.38 in the lecture notes. Indeed,
the only accumulation point of the spectrum of a compact operator is 0, whereas σ(T ) has the
entire interval [0, 1] as accumulation points. Also, for a compact operator the spectrum away from
0 coincides with the set of eigenvalues away from 0, which is not the case for T .

Exercise 13.4.
In this exercise you will construct a compact operator, which is in some sense a right inverse
for the Laplace operator − d2

dx2 on [0, π].

(a) Let f ∈ L2([0, π];R) and consider the following differential equation with boundary
conditions: {

−u′′ = f,

u(0) = u(π) = 0.
(2)

Recall from Exercise 7.3 that B = {
√

2/π sin(kx)}k∈N is a Hilbert basis for L2([0, π];R).
Write both u and f as Fourier series of sines on [0, π] and formally find a solution u of (2).

(b) Show that for f ∈ L2([0, π];R), the formal solution satisfies u ∈ L2([0, π];R) ∩ C([0, π])
and the boundary condition u(0) = u(π) = 0 is satisfied.

(c) Prove that the map assigning f to the formal solution u of (2)

T : L2([0, π];R) → L2([0, π];R), T (f) = u

is a continuous linear operator, which is moreover self-adjoint and compact.

(d) Show that the set of functions{
u ∈ C2([0, π];R), u(0) = u(π) = 0

}
is contained in the image of T . What is a sufficient condition on the Fourier coefficients of
f to make sure that u = T (f) is C2, i.e. that it is a classical solution of (2)?

(e) We have shown that the map

P : Im(T ) → L2([0, π];R), P (u) = f, where u = T (f),

is an extension of the operator − d2

dx2 from the subspace{
u ∈ C2([0, π];R), u(0) = u(π) = 0

}
⊂ L2([0, π];R)

to the larger subspace Im(T ) ⊂ L2([0, π];R). By the Spectral Theorem for compact opera-
tors, we know that there is a Hilbert basis consisting of eigenfunctions of T . Show that the
same eigenfunctions are eigenfunctions of P .

Remark: We have found a Hilbert basis of eigenfunctions for the Laplace operator − d2

dx2

with Dirichlet boundary conditions, i.e. an orthonormal basis {φn}n∈N ⊂ L2([0, π];R) and
eigenvalues {λn}n∈N ⊂ R such that{

−φ′′
n = λnen,

φn(0) = φn(π) = 0.
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Of course we’ve been working with said eigenfunctions since the beginning of this exercise,
what are they? A similar strategy can be used to find a Hilbert basis of eigenfunctions for
the Laplace operator with Dirichlet boundary conditions on more complicated domains.

Solution:

(a) Since f is a real-valued L2 function on [0, π], it has a Fourier series expansion in terms of sines,
see Exercise 7.3:

f(x) =
∞∑
k=1

ak(f) sin(kx), where ak(f) =
2

π

∫ π

0
f(x) sin(kx) dx.

We make a similar ansatz for u:

u(x) =

∞∑
k=1

ak(u) sin(kx), ak(u) =
2

π

∫ π

0
u(x) sin(kx) dx.

Note that we choose a Fourier series in terms of sines in order to satisfy the boundary conditions
at 0, π. Formally plugging this into equation (2), we find

−u′′(x) =
∞∑
k=1

k2ak(u) sin(kx) =
∞∑
k=1

ak(f) sin(kx) = f(x).

Thus, for every f ∈ L2([0, π],R) the function defined by the expression

u(x) =

∞∑
k=1

ak(f)

k2
sin(kx) (3)

is a formal solution to (2).

(b) Note that for f ∈ L2([0, π];R) the series in (3) converges in L2. Indeed, this can be seen from
square-summability of the Fourier coefficients; one can for instance argue with Theorem 2.13 and
the fact that

∞∑
k=1

∥∥∥∥ak(f)k2
sin(kx)

∥∥∥∥2
L2([0,π])

=
π

2

∞∑
k=1

(
ak(f)

k2

)2

≤ π

2

∑
k≥1

ak(f)
2 < ∞,

where we used that ∥ sin(kx)∥2L2([0,π]) =
π
2 for all k ∈ N. Furthermore, the absolute summability

of the Fourier coefficients of u implies that u is continuous. Indeed, the partial sums in (3) are
smooth and converge uniformly to u on [0, π], since

∞∑
k=1

∥∥∥∥ak(f)k2
sin(kx)

∥∥∥∥
L∞([0,π])

=

∞∑
k=1

|ak(f)|
k2

≤
( ∞∑

k=1

|ak(f)|2
) 1

2
( ∞∑

k=1

1

k4

) 1
2
< ∞.

Thus, u ∈ C([0, π]) and pointwise convergence of the Fourier series gives u(0) = u(π) = 0 (since
sin(0) = sin(kπ) = 0 for all k ∈ N).
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(c) Linearity of the map T : f → u follows immediately from linearity of the Fourier coefficients
ak(f). For continuity of the operator we use orthonormality of

√
2/π sin(kx) to estimate as above:

∥u∥2L2([0,π]) =

∥∥∥∥∥
∞∑
k=1

ak(f)

k2
sin(kx)

∥∥∥∥∥
2

L2([0,π])

=
π

2

∞∑
k=1

(
ak(f)

k2

)2

≤ π

2

∑
k≥1

ak(f)
2 = ∥f∥L2([0,π]).

Thus, ∥T∥ ≤ 1. Self-adjointness follows directly, since for f, g ∈ L2([0, π],R) we have

⟨Tf, g⟩ = π

2

∞∑
k=1

ak(f)

k2
ak(g) =

π

2

∞∑
k=1

ak(f)
ak(g)

k2
= ⟨f, Tg⟩ ,

where we once again used the orthonormality of {
√
2/π sin(kx)}k∈N. Compactness follows as in

Exercise 13.2. Define

Tn : L2([0, π];R) → L2([0, π];R), Tn(f)(x) =

n∑
k=1

ak(f)

k2
sin(kx).

Then the range of Tn is contained in Span{sin(x), sin(2x), . . . , sin(nx)}, i.e. Tn is a finite rank
operator for each n ∈ N, and

∥T − Tn∥ = sup
∥f∥L2=1

∥T (f)− Tn(f)∥L2([0,π]) = sup
∥f∥L2=1

(π
2

∞∑
k=n+1

ak(f)
2

k4

) 1
2

≤ 1

(n+ 1)2
sup

∥f∥L2=1

(π
2

∞∑
k=n+1

ak(f)
2
) 1

2 ≤ 1

(n+ 1)2
→ 0

as n → ∞. Thus, T is compact as the limit of a sequence of finite rank operators.

(d) Assume that u ∈ C2([0, π];R) and u(0) = u(π) = 0. Then in particular u′′ ∈ C([0, π];R) ⊂
L2([0, π];R), so u′′ has a Fourier expansion in terms of sines. The coefficients satisfy

ak(u
′′) =

2

π

∫ π

0
u′′(x) sin(kx) dx =

2

π

(
u′(x) sin(kx)

∣∣x=π

x=0
− k

∫ π

0
u′(x) cos(kx) dx

)
=

2

π

(
k · u(x) cos(kx)

∣∣x=π

x=0
− k2

∫ π

0
u(x) sin(kx) dx

)
= −k2ak(u),

where in the first line we used that sin(0) = sin(kπ) = 0 and in the second line we used that
u(0) = u(π) = 0. This is similar to the strategy of Theorem 2.22 in the lecture notes. However,
note that the boundary conditions are important here since sin(kx) is not actually periodic on [0, π]
when k is odd. Now ak(u

′′) is square summable, so

∞∑
k=1

k2|ak(u)| =
∞∑
k=1

|ak(u′′)| < ∞.

Thus, we can define an L2 functions f(x) = −u′′(x) =
∑∞

k=1 k
2ak(u) sin(kx) ∈ L2([0, π];R) and we

see from the definition of the operator T that T (f) = u.
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For the second part, note that by Theorem 2.26 in the lecture notes (or a slight variation thereof),
if the Fourier coefficients of u = T (f) satisfy

∞∑
k=1

k2|ak(u)| =
∞∑
k=1

k2
|ak(f)|
k2

=
∑
k≥1

|ak(f)| < ∞

then u is of class C2 and −u′′ = f . Thus, absolute summability of the Fourier coefficients of f is
enough to ensure that u is a classical solution to (2).

(e) Let {φn}n∈N be a Hilbert basis of eigenfunctions for T with associated eigenvalues {µn}n∈N.
Notice that µn ̸= 0 for all n ∈ N. Indeed, T has trivial kernel, since if

T (f) =
∞∑
k=1

ak(f)

k2
sin(kx) = 0,

then we must have ak(f) = 0 for all k, so f = 0. Hence, φn = 1
µn

Tφn for all n, so φn lies in the
image of T . Thus, the operator P is well-defined on φn and we have

Pφn =
1

µn
PTφn =

1

µn
φn.

This shows that the φn form an orthonormal basis of eigenfunctions of P with associated eigenvalues
λn = 1

µn
. Of course the eigenfunctions are given explicitly by

√
2/π sin(nx) with eigenvalue n2.

7 / 7


