ANALYSIS IV - EXAM #1 - 90 MIN

Problem 1. Let H be a complex vector space and consider a function $\langle \cdot, \cdot \rangle$: H \times $H \to \mathbb{C}.$

(a) Define what it means that the pair $(H, \langle \cdot, \cdot \rangle)$ is a complex Hilbert space. From now on assume that $(H, \langle \cdot, \cdot \rangle)$ is indeed an Hilbert space.

- (b) Let $V \subset H$ be a vector subspace. Providing all the necessary assumptions, state the projection theorem on V. More precisely, define the closest-point projection operator $\pi_V \colon H \to V$ and characterize $\pi_V(x)$ (the projection of a point x) by a suitable orthogonality condition. No proofs are required.
- (c) Assume $H := L^2(\mathbb{R})$ with the standard L^2 scalar product and $V := \{ \text{odd functions in } L^2(\mathbb{R}) \}$. After checking the necessary assumptions, prove that

$$\pi_V(f)(x) = \frac{f(x) - f(-x)}{2}.$$

Problem 2.

- (a) Compute the Fourier transform of $f(t) := \mathcal{X}_{[-1/2,1/2]}(t), t \in \mathbb{R}$.
- (b) Given u, v in $L^1(\mathbb{R})$, express $\mathcal{F}(u * v)$ in terms of \hat{u} and \hat{v} . Prove rigorously your formula and specify whether $\mathcal{F}(u * v)$ is computed in the L^1 or in the L^2 sense.
- (c) Check that $g(t) := (f * f)(t) = (1 |t|)_+$ for all $t \in \mathbb{R}$ and compute \hat{g} .
- (d) Does \hat{g} belong to the Schwartz class $\mathcal{S}(\mathbb{R})$?

Problem 3. Consider the heat-type PDE

(P)
$$\partial_t u = \cos(t)\partial_{xx}u$$
, in $(0,T) \times \mathbb{R}$, $u(0^+, x) = f(x)$ for all $x \in \mathbb{R}$,
where

where

- T > 0 is a given "final time",
- u(t, x) is assumed to be real-valued and 2π -periodic in the x variable, that is $u(t, x) = u(t, x + 2\pi)$ for all $t \in (0, T)$ and $x \in \mathbb{R}$,
- f(x) is a given initial condition which is also 2π -periodic.

Complete the following tasks:

- (a) Assuming you are given the Fourier coefficients $\{c_k(f)\}_{k\in\mathbb{Z}}$ construct a formal solution w of (P) as a Fourier series in the x variable with t-dependent coefficients.
- (b) Check that, if $\int_{-\pi}^{\pi} |f|^2 < \infty$ and $T < \pi$, then $w \colon (0,T) \times \mathbb{R} \to \mathbb{R}$ is indeed a well-defined continuous function.
- (c) Show that also the initial condition is met in the sense that

$$\lim_{t \downarrow 0} \|w(t, \cdot) - f\|_{L^2(-\pi, \pi)} = 0.$$

(d) Show that w is in fact of class C^2 (in both variables) and solves the equation

$$\partial_t w = \cos(t) \partial_{xx} w$$
 in $(0, T) \times \mathbb{R}$.

Please turn the page!

You can give for granted the following facts:

- The definition of vector space over \mathbb{C} .
- A function $f \colon \mathbb{R} \to \mathbb{C}$ is odd if f(-x) = -f(x).
- If $E \subset \mathbb{R}$, then $\mathcal{X}_E \colon \mathbb{R} \to \{0,1\}$ is the indicator function of E.
- If w(t) is a real-valued function then $w(t)_+$ denotes the positive part of w, that is $w(t)_+ := \max\{w(t), 0\}$. • The Fourier transform in \mathbb{R}^d (under suitable assumptions) is given by

$$\mathcal{F}(f)(\xi) = \widehat{f}(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{-i\xi \cdot x} \, dx.$$

• The convolution of $f, g: \mathbb{R} \to \mathbb{C}$ (under suitable assumptions) is given by

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy$$

• For a 2π periodic function $f: \mathbb{R} \to \mathbb{C}$ the kth fourier coefficient is given by

$$c_k(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$
 for each $k \in \mathbb{Z}$.

Under suitable assumption f can be expressed as

$$f(x) = \sum_{k \in \mathbb{Z}} c_k(f) e^{ikx}.$$

 $\mathbf{2}$