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Question 4
[10 Points]

Q4 (i) [3 Points] Prove that the norm ∥ ·∥L∞(Rn) does not arise from an inner product in the space
L∞(Rn).
Solution:

The parallelogram identity

∥f + g∥2
∞ + ∥f − g∥2

∞ = 2∥f∥2
∞ + 2∥g∥2

∞

does not hold for all f, g ∈ L∞. As a counterexample, consider for instance two disjoint open
sets A,B ⊂ Rn and take f = χA, g = χB. Then

∥f + g∥2
∞ + ∥f − g∥2

∞ = 2 < 4 = 2∥f∥2
∞ + 2∥g∥2

∞.

Q4 (ii) [3 Points] State and prove the Riesz Representation Theorem.
Solution:

Theorem (Riesz) Let H be a Hilbert space and T : H → K be a continuous linear functional
on H. Then, there exists x0 ∈ H such that T (x) = ⟨x, x0⟩.
Proof: We can suppose that kerT ̸= H, otherwise the representation is given by x0 = 0. kerT
is a closed subspace by continuity and linearity. By the non-triviality of the orthogonal space
there exists z0 ∈ H such that ⟨z, z0⟩ = 0 for every z ∈ kerT and T (z0) = 1. For every x ∈ H,
x− T (x)z0 ∈ kerT since

T (x− T (x)z0) = T (x) − T (x) = 0.

Thus,
0 = ⟨x− T (x)z0, z0⟩ = ⟨x, z0⟩ − T (x)∥z0∥2

and the proof is concluded choosing x0 = z0/∥z0∥2.
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Q4 (iii) [4 Points] Consider the functional Tα,β : L2(Rn,R) → R defined by

Tα,β(g) :=
∫
Rn

(g(x) + β)(1 + |x|)−α dx.

Determine for which pairs (α, β) ∈ (0,+∞) × R the functional Tα,β is linear and for which pairs
it is continuous. For those pairs for which Tα,β is both linear and continuous, determine its Riesz
representation.
Solution:

If β ̸= 0 the functional is not linear since Tα,β(0) ̸= 0. By Cauchy–Schwarz inequality

|Tα,0(g)| =
∣∣∣∣∣
∫
Rn

g(x)
(1 + |x|)α

dx

∣∣∣∣∣
≤ ∥g∥L2(Rn)

(∫ +∞

0

ωnr
n−1

(1 + r)2α
dr

)1/2

and the last integral is finite if α > n/2, so in this case when β = 0 we obtain a linear
and bounded functional. For α ≤ n/2, if the functional were linear bounded, the function
(1 + |x|)−α would have to be its Riesz representation, and this is only in L2 for α > n/2.
Hence Tα,β is a continuous linear functional if and only if β = 0 and α > n/2, and in those
cases, its Riesz representation is given by taking the scalar product with (1 + |x|)−α.
Note: if β ̸= 0, the necessary and sufficient condition for the functional to be continuous
(and even well-defined) is that α > n: indeed, only then is the term β(1 + |x|)−α summable.
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Question 5
[8 Points]

Q5 (i) [3 Points] Given two functions φ, ψ ∈ S(R), express F(φ ∗ ψ) in terms of F(φ) and F(ψ)
and prove the statement.
Solution:

It holds
F(φ ∗ ψ) =

√
2πF(φ)F(ψ).

Indeed, we have

F(φ ∗ ψ)(ξ) = 1√
2π

∫
R

(∫
R
f(x− y)g(y)dy

)
e−ixξdx

= 1√
2π

∫
R

(∫
R
f(x− y)g(y)e−i(x−y)ξe−iyξdy

)
dx

=
∫
R
f̂(ξ)g(y)e−iyξdy

=
√

2πf̂(ξ)ĝ(ξ),

where the second-to-last inequality holds because of Fubini’s theorem, which is applicable
since ∫

R

(∫
R

∣∣∣f(x− y)g(y)e−i(x−y)ξe−iyξ
∣∣∣ dy) dx ≤ ∥f ∗ g∥L1 ≤ ∥f∥L1∥g∥L1

by Young’s inequality .

Q5 (ii) [2 Points] Let Φ : R → R be the Gaussian distribution, i.e. Φ(x) = 1√
2π
e−x2/2. Compute

Ψ := Φ ∗ Φ.
Solution:

By the previous formula, knowing that Φ̂ = Φ, we have

Ψ̂(ξ) =
√

2πΦ̂2(ξ) =
√

2πΦ2(ξ) = 1√
2π
e−ξ2 = 1√

2π
e−(

√
2ξ)2/2.

Knowing that the inverse Fourier transform of f̂(λ·) is 1
λ
f
(

·
λ

)
, we get that

Ψ(x) = 1√
2

1√
2π
e−(x/

√
2)2/2 = 1√

2
1√
2π
e−x2/4.
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Q5 (iii) [3 Points] Compute the Fourier transform of h(x) := xΦ(x) = 1√
2π
xe−x2/2.

Solution:

It holds
∂ξf̂(ξ) = F(−ixf(x)),

thus,
ĥ(ξ) = F(xΦ(x))(ξ) = i∂ξΦ̂(ξ) = i

1√
2π
e−ξ2/2(−ξ) = −iξ√

2π
e−ξ2/2.

Reminder: recall that the Fourier transform in R is defined, for suitable functions f : R → C, as

F(f)(ξ) = f̂(ξ) = 1√
2π

∫ ∞

−∞
f(x)e−iξx dx, ξ ∈ R.
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Question 6
[12 Points]

Consider the Schrödinger-type PDEiut + u+ uxx = 0 (t, x) ∈ (0,+∞) × R,
u(0, x) = f(x) in R,

(P)

where u is assumed to be a real-valued 2π-periodic function on R and f is also 2π-periodic.

Q6 (i) [3 Points] Assuming that you are given the Fourier coefficients {ck(f)}k∈Z of f , construct
a formal solution w to (P) as a Fourier series in the x variable with t dependent coefficients.
Solution:

Write w(t, x) = ∑
k∈Z e

ikxwk(t) and examine the equation satisfied by w:∑
k∈Z

eikx
(
iw′

k(t) + wk − k2wk

)
= 0.

Thus each term is zero and we get the ODEs w′
k(t) = i(1 − k2)wk whose solution is wk(t) =

ei(1−k2)twk(0). Since u(0, x) = f(x), we get the initial conditions wk(0) = ck(f), hence the
formal solution is

w(t, x) =
∑
k∈Z

eikxei(1−k2)tck(f).

Q6 (ii) [4 Points] Check that if f ∈ C∞
per([−π, π]), then the function w constructed is well defined,

of class C∞ and solves
iwt + w + wxx = 0 ∀(t, x) ∈ (0,+∞) × R

Solution:

Since f ∈ C∞
per, its Fourier coefficients decay faster then any polynomial, i.e. supk∈Z |k|α|ck(f)| <

∞ for every α ∈ N. We will show that∑
k∈Z

sup
(0,∞)×R

|∂p
t ∂

q
x(wk(t)eikx)| < ∞

for every pair of integers p, q ≥ 0. This will prove that the series converges uniformly, along
with all its derivatives, on compact subsets of (0,+∞) ×R and therefore that it is a classical
solution, since differentiation can be performed term by term. Observe that

sup
(0,∞)×R

|∂p
t ∂

q
x(wk(t)eikx)| = |ck(f)(ik)q(i(1 − k2))pei((1−k2)t+kx)|

≤ |ck(f)||kq(1 − k2)p|.

Set ℓ = 2p+ q + 2 and observe that |ck(f)| ≤ Cℓ(1 + |k|)−ℓ for every k ∈ Z. Thus we get∑
k∈Z

sup
(0,∞)×R

|∂p
t ∂

q
x(wk(t)eikx)| ≤

∑
k∈Z

|ck(f)||kq(1 − k2)p| ≤ Cℓ

∑
k∈Z

(1 + |k|)−2 < ∞,
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which means that the above sum converges uniformly to the continuous function ∂p
t ∂

q
xw.

Q6 (iii) [3 Points] Show that the initial condition is met, in the sense that

lim
t→0+

∥w(t, ·) − f∥L∞ = 0.

Solution:

We check that

sup
x∈R

|w(t, x) − f(x)| = sup
x∈R

∣∣∣∣∣∣
∑
k∈Z

wk(t)eikx −
∑
k∈Z

ck(f)eikx

∣∣∣∣∣∣
≤
∑
k∈Z

∣∣∣ck(f)ei(1−k2)t − ck(f)
∣∣∣

=
∑
k∈Z

|ck(f)||ei(1−k2)t − 1|.

Taking the limit as t → 0+ yields the conclusion once we show that the passage of the limit in
the sum in the right-hand side is justified. This fact follows from the Dominated Convergence
Theorem, since |ei(1−k2)t − 1| ≤ 2 and∑

k∈Z
|ck(f)| |ei(1−k2)t − 1| ≤ 2

∑
k∈Z

|ck(f)| ≤ 2C2
∑
k∈Z

(1 + |k|)−2 < ∞.

Q6 (iv) [2 Points] Does the limit
lim
t→∞

w(t, ·)

always exist? Is it finite?
Solution:

The limit limt→∞ w(t, ·) does not exist in general, in any sense. As an example, let f = 1 and
observe that the corresponding solution is

w(t, x) = eit,

which does not converge as t → +∞.
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