Serie 1

Die Übungen haben 0, 1, 2 oder 3 Sterne. Ohne Sterne heisst, dass die Übung mehr oder weniger eine direkte Anwendung der Vorlesung ist. Wenn es 1, 2 oder 3 Sterne gibt, bedeutet es, dass die Übung schwieriger oder wirklich schwierig ist. Wenn ein Übung 1, 2 oder 3 Sterne hat, gibt es fast immer einen Hinweis auf dem Übungsblatt!

* * *

 \ddot{U} bung 1. Sei X = [-1, 1] als Unterraum von \mathbb{R} mit der Unterraumtopologie. Entscheiden Sie für jede der folgenden Mengen in X ob sie offen, abgeschlossen, beides, oder keines von beidem ist:

$$\begin{split} &\{x \in X \mid \frac{1}{2} < |x| < 1\}, \\ &\{x \in X \mid \frac{1}{2} < |x| \leqslant 1\}, \\ &\{x \in X \mid \frac{1}{2} \leqslant |x| < 1\}, \\ &\{x \in X \mid \frac{1}{2} \leqslant |x| \leqslant 1\}. \end{split}$$

Übung 2. Sei X eine Menge.

- (a) Zeigen Sie, dass
- $\mathcal{O}_{cof} := \{ U \subseteq X \mid X \setminus U \text{ ist endlich oder } U \text{ ist die leere Menge} \}$

eine Topologie auf X ist. Man nennt O_{cof} die kofinite Topologie.

(b) Für welche Mengen X bildet die Menge aller endlicher Teilmengen eine Topologie?

Übung 3. Sei X eine Menge.

(a) Seien d_1 und d_2 Metriken auf X, so dass es eine reelle Zahl a > 0 gibt mit

$$d_1(x, y) \leq d_2(x, y)^{\alpha}$$

für alle $(x, y) \in X \times X$. Beweisen Sie, dass d_2 eine feinere Topologie als d_1 auf X induziert. Nehmen Sie jetzt zusätzlich an, dass es eine reelle Zahl b>0 gibt mit

$$d_2(x,y) \leqslant d_1(x,y)^b$$

für alle $(x, y) \in X \times X$. Beweisen Sie, dass d_1 und d_2 dieselbe Topologie auf X induzieren.

(b) Sei d eine Metrik auf X. Zeigen Sie, dass

$$\delta(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

eine Metrik auf X definiert. Zeigen Sie, dass δ und d dieselben Topologien definieren. Zeigen Sie $\delta(x,y) \leq 1$ für alle $(x,y) \in X \times X$. (Dies demonstriert, dass man in jedem metrischen Raum die Metrik so ändern kann, dass zwei beliebige Punkte den Abstand ≤ 1 haben, ohne die Topologie zu ändern.)

 $\ddot{\mathcal{U}}$ bung 4. Sei X ein topologischer Raum und sei $A\subseteq X$ eine Menge.

- (a) Zeigen Sie, dass das Innere A° die grösste in A enthaltene offene Menge ist, d.h. A° ist offen und für jede offene Menge $B \subseteq A$ gilt $B \subseteq A^{\circ}$.
- (b) Zeigen Sie, dass die abgeschlossene Hülle \overline{A} von A die kleinste abgeschlossene Menge ist, die A enthält, d.h. \overline{A} ist abgeschlossen und für jede abgeschlossene Menge B mit B \supseteq A gilt B \supseteq \overline{A} .
- (c) Zeigen Sie, dass das Innere des Rands von A leer ist, d.h. $(\partial A)^{\circ} = \emptyset$.

 $\ddot{\mathcal{U}}$ bung 5.(*) Sei $\mathbb Z$ die Menge aller ganzen Zahlen und

$$\mathcal{B} = \{ a\mathbb{Z} + b \mid a \in \mathbb{Z} \setminus \{0\}, b \in \mathbb{Z} \}$$

eine Teilmenge von $\mathcal{P}(\mathbb{Z})$.

- (a) Zeigen Sie, dass $\mathcal B$ eine Basis für eine Topologie $\mathcal O$ ist und dass alle Elemente von $\mathcal B$ bezüglich $\mathcal O$ abgeschlossen sind.
- (b) Zeigen Sie

$$\mathbb{Z}\backslash\{-1,1\}=\bigcup_{p \text{ prim}}p\mathbb{Z}.$$

(c) Folgern Sie, dass es unendlich viele Primzahlen gibt ^{1,2}.

Übung 6. Sei $\mathbb{N} = \{1, 2, ...\}$ die Menge der natürlichen Zahlen und $\mathbb{R}^{\mathbb{N}} = \{(x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{R}\}$ die Menge aller Folgen reeller Zahlen. Sei \mathbb{O} die Produkttopologie auf $\mathbb{R}^{\mathbb{N}}$ (das Produkt hat \mathbb{N} viele Faktoren, und jeder Faktor ist \mathbb{R}).

(a) Sei

$$d((x_n),(y_n)) = \sum_{n \in \mathbb{N}} \frac{\min(|x_n - y_n|, 1)}{2^n},$$

für zwei Folgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ in $\mathbb{R}^\mathbb{N}$. Zeigen Sie, dass d wohldefiniert³ ist und eine Metrik auf $\mathbb{R}^\mathbb{N}$ ist.

- (b) (★★) Zeigen Sie, dass die von der Metrik d induzierte Topologie gleich ① ist⁴.
- (c) Beschreiben Sie eine Metrik e auf $\coprod_{n\in\mathbb{N}}\mathbb{R}$, welche die Summentopologie der \mathbb{N} Kopien von \mathbb{R} induziert 5 .

* * *

Man kann e(x, y) = 1 setzen falls x, y in verschiedenen Kopien liegen.

Und vice versa kann man zeigen, dass jeder Ball B (x,τ) eine offene Menge U in O mit $x\in U$ enthält.

[&]quot; Man kann zeigen, dass es für alle oftenen Mengen U in $\mathbb O$ und $x \in \mathbb U$ ein $\tau > 0$ gibt, sodass $B(x,\tau) \subset \mathbb U$.

³ Die Reihe ist stets kleiner als $\sum \frac{1}{2^n}$.

Zolbe es nur endlich viele Primzahlen, könnte man zeigen, dass $\mathbb{Z}/\{-1,1\}$ abgeschlossen ist.

¹ Zeigen Sie, dass alle offenen Menge unendlich sind.