Serie 10

Die Übungen haben 0, 1, 2 oder 3 Sterne. Ohne Sterne heisst, dass die Übung fast eine Anwendung des Kurses ist. Wenn es 1, 2 oder 3 Sterne gibt, bedeutet es, dass die Übung schwieriger oder wirklich schwierig ist. Wenn ein Übung 1, 2 oder 3 Sterne hat, gibt es fast immer einen Hinweis auf den Übungsblatt. Versuchen Sie die Übungen am besten zuerst ohne Hinweise!

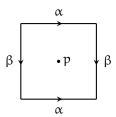
* * *

Übung 1. Benutzen Sie den Satz von Seifert und van Kampen, um die folgenden Fundamentalgruppen zu bestimmen:

- (a) $\pi_1(T^2, x_0)$, wobei T^2 den Torus bezeichnet,
- (b) $\pi_1(K, x_0)$, wobei K die Kleinsche Flasche bezeichnet.

Lösung für Übung 1:

(a) We first determine the fundamental group of $T^2 \setminus \{p\}$ for any point $p \in T^2$. Let us represent the torus T^2 as a square with opposite sides identified, that is Q/\sim , where $Q := [-1,1] \times [-1,1]$ and $(x,-1) \sim (x,1)$ for $x \in [-1,1]$, $(-1,y) \sim (1,y)$ for $y \in [-1,1]$ (see Figure (a)).



Moreover, we can assume that p = (0,0) is the center of the square. Observe that $Q \setminus \{p\}$ deformation retracts on the boundary of the square ∂Q , via the "linear" homotopy

$$H((x,y),t) = (1-t)(x,y) + tb(x,y),$$

where $b(x,y) \in \partial Q$ is the unique intersection of ∂Q with the ray starting from p and going through (x,y). As a result, the fundamental group of $(Q/\sim) \setminus \{p\}$ is the same as the fundamental group of $\partial Q/\sim$. However, observe that $\partial Q/\sim$ is homeomorphic to the wedge sum of two circles, hence we obtain that

$$\pi_1\left(T^2\setminus\{p\},x_0\right)=\pi_1\left(\partial Q/{\sim},x_0\right)=\pi_1\left(S^1\vee S^1\right)=\pi_1\left(S^1\right)*\pi_1\left(S^1\right)=\mathbb{Z}*\mathbb{Z}$$

by the Seifert-van Kampen Theorem.

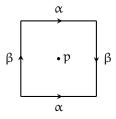
Now, let us use this to determine π_1 (T²). To that end, consider the open cover of T² consisting of the open sets $A = (Q/\sim) \setminus \{(0,0)\} \subseteq Q/\sim$ and $B = \operatorname{int}(Q) = (-1,1) \times (-1,1) \subseteq Q/\sim$. By the above discussion, the fundamental group of A is $\mathbb{Z} * \mathbb{Z}$, whose generators are $\mathfrak{a} = [\mathfrak{a}]$ and $\mathfrak{b} = [\mathfrak{b}]$, where $\mathfrak{a}, \mathfrak{b} : [0,1] \to A$ are the curves $\mathfrak{a}(t) := (-1+2t,-1) = (-1+2t,1)$ and $\mathfrak{b}(t) := (-1,1-2t) = (1,1-2t)$ (see the above figure). On the other hand, B is contractible and thus has trivial fundamental group. Moreover note that $A \cap B = ((-1,1) \times (-1,1)) \setminus \{(0,0)\}$ is homotopy equivalent to S¹, hence it has fundamental group \mathbb{Z} and a generator for $\pi_1(A \cap B)$ is the equivalence class of a curve homotopic to $\mathfrak{a}\mathfrak{b}\mathfrak{a}^{-1}\mathfrak{b}^{-1}$ (i.e. a curve winding clockwise once around the origin).

As a result, by the Seifert-van Kampen Theorem, we have that

$$\pi_1\left(\mathsf{T}^2, x_0\right) = \frac{(\pi_1(\mathsf{A}, x_0) * \pi_1(\mathsf{B}, x_0))}{\mathsf{N}} = \frac{\pi_1(\mathsf{A}, x_0)}{\mathsf{N}} = \frac{(\mathbb{Z} * \mathbb{Z})}{\mathsf{N}},$$

where N is the normal subgroup of $\mathbb{Z}*\mathbb{Z}$ generated by $\mathfrak{aba}^{-1}\mathfrak{b}^{-1}$. Now, observing that $(\mathbb{Z}*\mathbb{Z})/N$ is isomorphic to $\mathbb{Z}\times\mathbb{Z}$, we conclude that $\pi_1(T^2,x_0)\cong\mathbb{Z}\times\mathbb{Z}$.

(b) Similarly to what we did in the proof of the previous exercise (in fact the whole argument will be very similar), let us represent the Klein bottle K as a quotient of the square, that is Q/\sim , where $Q:=[-1,1]\times[-1,1]$ and $(x,-1)\sim(x,1)$ for $x\in[-1,1]$, $(-1,y)\sim(1,-y)$ for $y\in[-1,1]$ (see the figure below). Note that, differently from the torus, here the vertical sides are identified with opposite orientation.



Again, we first determine the fundamental group of $K \setminus \{p\}$, where p is any point $p \in K$. We can assume that p = (0,0) is the center of the square. Then, exactly the same homotopy as in part (a) shows that $(Q/\sim) \setminus \{p\}$ deformation retracts onto $\partial Q/\sim$, which is homeomorphic to the wedge sum of two circles (as before, even if the equivalent relation is different). Hence, by the Seifert–van Kampen Theorem, we obtain that

$$\pi_1(K \setminus \{p\}, x_0) = \pi_1(\partial Q/\sim, x_0) = \pi_1(S^1 \vee S^1, x_0) = \pi_1(S^1, x_0) * \pi_1(S^1, x_0) = \mathbb{Z} * \mathbb{Z}.$$

Now, similarly as in part (a), we define $A=(Q/\sim)\setminus\{(0,0)\}$, $B=\operatorname{int}(Q)$ and the generators of $\pi_1(A,x_0)=\mathbb{Z}*\mathbb{Z}$ as $\mathfrak{a}=[\alpha]$ and $\mathfrak{b}=[\beta]$ represented by the curves $\alpha,\beta\colon [0,1]\to A$ given by $\alpha(t):=(-1+2t,-1)=(-1+2t,1)$ and $\beta(t):=(1,1-2t)=(-1,-1+2t)$ (note that now the quotient on the boundary of Q is different). Then, a generator for the fundamental group of $A\cap B$ is $\alpha\beta\alpha^{-1}\beta$ and by the Seifert–van Kampen Theorem, we have that

$$\pi_1(K,x_0) = (\pi_1(A,x_0) * \pi_1(B,x_0)) /_{N} = \pi_1(A,x_0) /_{N} = (\mathbb{Z} * \mathbb{Z}) /_{N},$$

where N is the normal subgroup of $\mathbb{Z} * \mathbb{Z}$ generated by $aba^{-1}b$.

This group is isomorphic to the semidirect product $\mathbb{Z}\rtimes_{\alpha}\mathbb{Z}$, where the right copy of \mathbb{Z} acts on the left copy of \mathbb{Z} via $\alpha\colon\mathbb{Z}\to \text{Aut}(\mathbb{Z})=\mathbb{Z}^\times:\mathfrak{n}\mapsto (-1)^\mathfrak{n}$. In other words, it is the set $\mathbb{Z}\times\mathbb{Z}$ with multiplication $(x,y)\cdot(x',y')=(x+(-1)^\mathfrak{y}x',y+y')$. The isomorphism can be constructed as follows: the homomorphism $\phi\colon\mathbb{Z}*\mathbb{Z}\to\mathbb{Z}\times\mathbb{Z}:\mathfrak{a}\mapsto (0,1),\mathfrak{b}\mapsto (1,0)$ induces a well-defined homomorphism $\overline{\phi}\colon\mathbb{Z}*\mathbb{Z}/N\to\mathbb{Z}\times\mathbb{Z}$, because

$$\varphi(aba^{-1}b) = (0,1) \cdot (1,0) \cdot (0,-1) \cdot (1,0) = (-1,0) \cdot (1,0) = (0,0);$$

and it can be checked that $\overline{\varphi}$ is an isomorphism. This is typically called simply the Klein bottle group.

 $\begin{subarray}{l} \begin{subarray}{l} Ubung 2. Sei $g\geqslant 2.$ Wir definieren die $geschlossene$, orientierbare Fläche Σ_g vom Geschlecht g als Quotientenraum eines Polygons wie folgt. Sei P_{4g} ein (regelmäßiges) $4g$-seitiges Polygon, dessen Seiten im Uhrzeigersinn mit 0 bis $4g-1$ nummeriert seien. Dann ist Σ_g die Fläche, die man aus P_{4g} erhält, indem man für alle $S=0,4,8,\ldots,4(g-1)$ und für alle $S=1,5,9,\ldots,4(g-1)+1$ die im Uhrzeigersinn parametrisierte Seite S mit der im Gegenuhrzeigersinn parametrisierten Seite $S+2$ identifiziert.$

Bestimmen Sie mit Hilfe des Satzes von Seifert und van Kampen die Fundamentalgruppe π_1 (Σ_g , x_0).

Lösung für Übung 2: Wie in Übung 1, Serie 10 benutzen wir den Satz von Seifert und van Kampen wie folgt: U ist das Polygon von Abbildung 1 ohne die Kanten, und V ist das Polygon ohne den Mittelpunkt. Dann haben wir $\pi_1(U \cap V, x_0) \cong \mathbb{Z}$, $\pi_1(U) \cong 0$ und $\pi_1(V) \cong \mathbb{Z}$. Aber die Schleife γ , die $\pi_1(U \cap V, x_0) \cong \mathbb{Z}$ erzeugt, kann man auch als $\alpha_1\beta_1\alpha_1^{-1}\beta_1^{-1}\cdots\alpha_g\beta_g\alpha_g^{-1}\beta_g^{-1}$ schreiben. Es gilt, dass

$$\pi_1(\Sigma_g) \cong \{\alpha_1,\beta_1,\cdots,\alpha_g,\beta_g \mid \alpha_1\beta_1\alpha_1^{-1}\beta_1^{-1}\cdots\alpha_g\beta_g\alpha_g^{-1}\beta_g^{-1}\}.$$

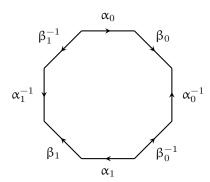


Abbildung 1: Beispiel für die Konstruktion von Σ_g durch Identifikation der Seiten eines 4g-seitigen Polygons im Fall g = 2.

(a) Seien (X_1, x_1) und (X_2, x_2) zwei punktierte topologische Räume, die kontrahierbare offene Umgebungen $U_i \subseteq X_i$ von x_i besitzen für i = 1, 2. Finden Sie einen natürlichen Isomorphismus

$$\pi_1(X_1, x_1) * \pi_1(X_2, x_2) \cong \pi_1(X_1 \vee X_2, x_1 = x_2).$$

(b) Sei wie in der Vorlesung

$$\mathsf{H} \coloneqq \bigcup_{n=1}^{\infty} \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid (x_1 - \frac{1}{n})^2 + x_2^2 = \frac{1}{n^2} \right\}$$

der Hawaiianische Ohrring. Zeigen Sie, dass die natürliche Abbildung wie in (a)

$$\pi_1(H, 0) * \pi_1(H, 0) \rightarrow \pi_1(H \vee H, 0 = 0)$$

kein Isomorphismus ist.

Lösung für Übung 3:

(a) Seien $U=X_1\vee_{x_1=x_2}U_2$ und $V=X_2\vee_{x_1=x_2}U_1$ zwei offene Teilmengen von $X_1\vee X_2$. Da U_1 und U_2 kontrahierbare offene Umgebungen sind, haben wir, dass $U\cap V\cong U_1\vee_{x_1=x_2}U_2$ kontrahierbar ist. Wir haben auch, dass $U=X_1\vee_{x_1=x_2}U_2$ (bzw. $V=X_2\vee_{x_1=x_2}U_1$) homotopieäquivalent zu X_1 (bzw. X_2) ist. Mit der Hilfe des Satzes von Seifert–van Kampen, ist die Abbildung $\iota_*^1*\iota_*^2$, wobei $\iota_i:X_i\to X_1\vee X_2$ die Inklusion bezeichnet, ein Isomorphismus

$$\pi_1(X_1, x_1) * \pi_1(X_2, x_2) \to \pi_1(X_1 \vee X_2, x_1 = x_2).$$

(b) Es bezeichnen wie in (a) ι^1 und ι^2 die beiden Inklusionen $H \to H \lor H$. Sei $\gamma \colon [0,1] \to H \lor H$ die Schleife

$$\gamma(s) = \left\{ \begin{array}{ll} \iota^{k \ mod \ 2}(1/k + \cos(2^{k+2}\pi s)/k, \sin(2^{k+2}\pi s)/k) & \text{ falls } s \in [2^{-k}, 2^{-k-1}] \ \text{für } k = 0, 1, 2, \dots \\ 0 & \text{ falls } s = 0. \end{array} \right.$$

Man sieht, dass $[\gamma] \in \pi_1(H \vee H, 0 = 0)$ nicht im Bild von $\pi_1(H, 0) * \pi_1(H, 0) \to \pi_1(H \vee H, 0 = 0)$ liegt.

 \dot{U} bung 4. Sei X die Menge aller Funktionen $f: \mathbb{R} \to \mathbb{R}$. Man betrachte die folgenden Topologien auf X: Produkttopologie; diskrete Topologie; indiskrete Topologie; von

$$B_{\varepsilon,f} = \{ g \in X \mid \forall x \in \mathbb{R} : |f(x) - g(x)| < \varepsilon \}$$

für alle $\varepsilon > 0$, $f \in X$ erzeugte Topologie; von

$$C_{\varepsilon,f,a,b} = \{ g \in X \mid \forall x \in [a,b] : |f(x) - g(x)| < \varepsilon \}$$

für alle $\varepsilon > 0$, $f \in X$ und $a, b \in \mathbb{R}$, $a \le b$ erzeugte Topologie.

- (a) Ordnen Sie dies Topologien nach Feinheit.
- (b) Für jede dieser Topologien beschreibe man, was es für eine Folge $f_1, f_2, ... \in X$ bedeutet, gegen $g \in X$ zu konvergieren.

Lösung für Übung 4:

(a) Die diskrete Topologie ist immer die feinste Topologie und die indiskrete Topologie ist immer die gröbste Topologie. Wir bezeichnen mit \mathcal{O}_1 die Produkttopologie, und mit \mathcal{O}_2 und \mathcal{O}_3 die Topologien, die jeweils von $\mathsf{B}_{\varepsilon,\mathsf{f}}$ und $\mathsf{C}_{\varepsilon,\mathsf{f},\mathfrak{a},\mathsf{b}}$ für alle ε , f , a und b erzeugt sind. Wir beschreiben zuerst einen Basis für die Produkttopologie. Wir bemerken, dass

$$X = \prod_{x \in \mathbb{R}} \mathbb{R}.$$

Nämlich haben wir $(f(x))_{x \in \mathbb{R}} \in \prod_{x \in \mathbb{R}} \mathbb{R}$. Die Produkttopologie ist von

$$D_{\varepsilon,f,I} := \{ g \in X \mid \forall x \in I : |f(x) - g(x)| < \varepsilon \}$$

für alle $\epsilon > 0$, $f \in X$ und endliche Untermengen $I \subset \mathbb{R}$ erzeugt. Es ist jetzt klar, dass

$$D_{\epsilon,f,I} = \bigcup_{[\alpha,b]\supset I} C_{\epsilon,f,\alpha,b} \text{ und } C_{\epsilon,f,\alpha,b} = \bigcup_{f'\in F} B_{\epsilon,f'},$$

wo $F = \{f' \in X, f' |_{[a,b]} = f\}$. Das heisst, dass O_2 feiner als O_3 feiner als O_3 ist.

- (b) Für die diskrete und indiskrete Topologie ist es wie sonst.
 - Die Folge f_n konvergiert gegen $g \in X$ bezüglich \mathcal{O}_2 wenn für alle $\varepsilon > 0$ ein N > 0 existiert, sodass für alle $n \ge N$ und $x \in \mathbb{R}$, $|f_n(x) g(x)| \le \varepsilon$. Dies nennt man gleichmässige Konvergenz, und entsprechend \mathcal{O}_2 die *Topologie der gleichmässigen Konvergenz*.
 - Die Folge f_n konvergiert gegen $g \in X$ bezüglich \mathcal{O}_3 wenn für alle $\varepsilon > 0$ und $a \le b$ ein N > 0 existiert, sodass für alle $n \ge N$ und $x \in [a,b]$, $|f_n(x) g(x)| \le \varepsilon$. Dies nennt man gleichmässige Konvergenz auf Kompakta, und entsprechend \mathcal{O}_3 die *Topologie der kompakten Konvergenz*. Auf \mathbb{R} ist diese Konvergenz äquivalent zu *lokal gleichmässiger Konvergenz*.
 - Die Folge f_n konvergiert gegen $g \in X$ bezüglich \mathcal{O}_1 wenn für alle $\epsilon > 0$ und $x \in \mathbb{R}$ ein N > 0 existiert, sodass für alle $n \ge N$ gilt $|f_n(x) g(x)| \le \epsilon$. Dies ist die punktweise Konvergenz.

 $\ddot{\mathcal{U}}$ bung 5.(*) Wir betrachten $\{0,1\}$ mit der diskreten Topologie. Wir haben in Serie 5, $\ddot{\mathcal{U}}$ bung 6 gesehen, dass

$$X := \{0, 1\}^{\mathcal{P}(\mathbb{N})}$$

(also der Raum aller Funktionen von der Potenzmenge der natürlichen Zahlen nach $\{0,1\}$, mit der Produkttopologie) kompakt ist, weil $\{0,1\}$ kompakt ist. Zeigen Sie jedoch, dass es eine Folge $(x_n)_{n\in\mathbb{N}}$ in X ohne konvergente Teilfolgen gibt.

 $\underline{\text{L\"osung f\"ur \"Ubung 5:}} \ \ \text{Wir definieren eine Folge} \ (x_n)_n \ \text{wie folgt,} \ x_n = (x_n^S)_{S \in \mathcal{P}(\mathbb{N})} \ \text{mit}$

$$x_n^S \coloneqq \left\{ \begin{array}{ll} 1 & \text{wenn } n \in S \\ 0 & \text{wenn } n \notin S. \end{array} \right.$$

Damit eine Teilfolge $(x_{n_k})_{n_k}$ gegen $y=(y^S)_{S\in\mathcal{P}(\mathbb{N})}\in X$ in der Produkttopologie konvergiert, muss folgendes gelten: für alle $S\subset\mathbb{N}$ gibt es $N_S\in\mathbb{N}$, sodass für alle $n_k\geqslant S_N$ gilt $x_{n_k}^S=y^S$. Sei $S=\{n_{2k}\mid k\in\mathbb{N}\}\in\mathcal{P}(\mathbb{N})$. Dann gilt für alle $k\in\mathbb{N}$ dass $x_{n_{2k}}^S=1$ und $x_{n_{2k+1}}^S=0$. Deshalb gibt es für dieses S kein geeignetes N_S . (In anderen Worten: wir haben eine Koordinate gefunden, bei der die Teilfolge nicht konvergiert – also konvergiert die Teilfolge nicht punktweise). Also hat diese Folge keine konvergente Teilfolge.

Übung 6. (**) Zeigen Sie, dass für alle $x,y \in [0,1]^{\mathbb{N}}$ ein Homöomorphismus $f: [0,1]^{\mathbb{N}} \to [0,1]^{\mathbb{N}}$ mit f(x) = y existiert, d.h. scheinbare "Randpunkte" wie z.B. die "Ecke" $\{0\}_{n \in \mathbb{N}}$ unterscheiden sich nicht qualitativ von "inneren Punkten" wie $\{\frac{1}{2}\}_{n \in \mathbb{N}}$.

Lösung für Übung 6: